S. G. Garanin, V. N. Derkach, K. N. Makarov, V. A. Ostrovsky, M. I. Pergament, M. V. Putilin, D. V. Sizmin
{"title":"Current Trends in the Creation of High-Energy Repetitively Pulsed Continuous Wave Lasers","authors":"S. G. Garanin, V. N. Derkach, K. N. Makarov, V. A. Ostrovsky, M. I. Pergament, M. V. Putilin, D. V. Sizmin","doi":"10.1134/S1028335823120029","DOIUrl":null,"url":null,"abstract":"<p>The current trends in the creation of high-energy repetitively pulsed continuous wave lasers with pulse energies of tens and hundreds of joules are considered. Active media are analyzed for their use in such lasers. The Yb:YAG active crystalline and ceramic elements produced in Russia are experimentally studied at temperatures from 100 to 295 K. The data of the cryogenic cooling system for active elements are presented. A diode pumping system for active elements and a homogenizer for its emission are described. The physical and technical characteristics of the pumping system are given. Fresnel losses, absorption losses, and losses due to enhanced spontaneous emission, which reduce the energy stored in the inverse population, are measured experimentally. The results of measuring the gain in multi-pass circuits with different sets of active elements are presented.</p>","PeriodicalId":533,"journal":{"name":"Doklady Physics","volume":"68 12","pages":"401 - 409"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1028335823120029","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The current trends in the creation of high-energy repetitively pulsed continuous wave lasers with pulse energies of tens and hundreds of joules are considered. Active media are analyzed for their use in such lasers. The Yb:YAG active crystalline and ceramic elements produced in Russia are experimentally studied at temperatures from 100 to 295 K. The data of the cryogenic cooling system for active elements are presented. A diode pumping system for active elements and a homogenizer for its emission are described. The physical and technical characteristics of the pumping system are given. Fresnel losses, absorption losses, and losses due to enhanced spontaneous emission, which reduce the energy stored in the inverse population, are measured experimentally. The results of measuring the gain in multi-pass circuits with different sets of active elements are presented.
期刊介绍:
Doklady Physics is a journal that publishes new research in physics of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.