Generation of Rectangular Nanosecond Electromagnetic Pulses with a Picosecond Rise Front

IF 0.6 4区 物理与天体物理 Q4 MECHANICS
S. V. Garnov, V. V. Bulgakova, T. V. Dolmatov, A. A. Ushakov, V. V. Bukin
{"title":"Generation of Rectangular Nanosecond Electromagnetic Pulses with a Picosecond Rise Front","authors":"S. V. Garnov,&nbsp;V. V. Bulgakova,&nbsp;T. V. Dolmatov,&nbsp;A. A. Ushakov,&nbsp;V. V. Bukin","doi":"10.1134/S1028335823110083","DOIUrl":null,"url":null,"abstract":"<p>A method for generation of ultra-wideband electromagnetic pulses with a nanosecond length and a picosecond rise time has been proposed and studied. A horn antenna with a photoconductive switch irradiated by laser pulses has been used as an emitter. It is shown that the length of ultra-wideband electromagnetic pulses is determined by the antenna length and the semiconductor material and the rise front is determined by the front of laser pulses used to initiate a photoconductive switch. Typical pulse lengths of ~1 ns with a rise front of up to ~34 ps are reported.</p>","PeriodicalId":533,"journal":{"name":"Doklady Physics","volume":"68 11","pages":"366 - 369"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1028335823110083","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A method for generation of ultra-wideband electromagnetic pulses with a nanosecond length and a picosecond rise time has been proposed and studied. A horn antenna with a photoconductive switch irradiated by laser pulses has been used as an emitter. It is shown that the length of ultra-wideband electromagnetic pulses is determined by the antenna length and the semiconductor material and the rise front is determined by the front of laser pulses used to initiate a photoconductive switch. Typical pulse lengths of ~1 ns with a rise front of up to ~34 ps are reported.

Abstract Image

Abstract Image

产生具有皮秒上升沿的矩形纳秒电磁脉冲
摘要 提出并研究了一种产生纳秒长度和皮秒上升时间的超宽带电磁脉冲的方法。该方法使用一个带有光电导开关的喇叭天线作为发射器,通过激光脉冲进行照射。研究表明,超宽带电磁脉冲的长度由天线长度和半导体材料决定,而上升前沿则由用于启动光电导开关的激光脉冲前沿决定。据报告,典型的脉冲长度为 ~1 ns,上升前沿可达 ~34 ps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Physics
Doklady Physics 物理-力学
CiteScore
1.40
自引率
12.50%
发文量
12
审稿时长
4-8 weeks
期刊介绍: Doklady Physics is a journal that publishes new research in physics of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信