Linear refractive index and density prediction of transparent B2O3-CaO-Li2O glasses reinforced with Sb2O3 utilizing machine learning techniques

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Hanan Al-Ghamdi, Norah A. M. Alsaif, Shaik Kareem Ahmmad, M. M. Ahmed, M. S. Shams, Adel M. El-Refaey, A. M. Abdelghany, Shaaban M. Shaaban, Y. S. Rammah, R. A. Elsad
{"title":"Linear refractive index and density prediction of transparent B2O3-CaO-Li2O glasses reinforced with Sb2O3 utilizing machine learning techniques","authors":"Hanan Al-Ghamdi,&nbsp;Norah A. M. Alsaif,&nbsp;Shaik Kareem Ahmmad,&nbsp;M. M. Ahmed,&nbsp;M. S. Shams,&nbsp;Adel M. El-Refaey,&nbsp;A. M. Abdelghany,&nbsp;Shaaban M. Shaaban,&nbsp;Y. S. Rammah,&nbsp;R. A. Elsad","doi":"10.1007/s41779-024-01006-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, for the first time the machine learning (ML) based refractive index (n) approach is established depends on the density (ρ) parameter of glasses for a dataset of 2000 oxide glasses to predict refractive index of B<sub>2</sub>O<sub>3</sub>-CaO-Li<sub>2</sub>O-Sb<sub>2</sub>O<sub>3</sub> glasses. Density of the investigated glasses varied from 2.56 to 2.97 gm/cm<sup>3</sup>. The corresponding refractive index was changed from 2.540 to 2.405. The refractive index prediction based on density parameter derived from the density of glasses and constant ‘K’. For all M-L techniques including gradient descent (GD), artificial neural network (ANN), and random forest regression (RFR), the density factor is used as an independent variable and the experimental refractive index as a dependent variable. The data set of 10,000 oxide glass samples was employed to forecast density using a variety of machine learning approaches. In comparison to other models, the Random forest regression (RFR) model fitted the glass data with the highest R<sup>2</sup> value of 0.949 for refractive index prediction and 0.925 for density prediction. For both the prediction of density and refractive index, the R<sup>2</sup> is controlled to 0.932 and 0.9223, respectively. The highest R<sup>2</sup> values for refractive index and density prediction were gained when the tanh activation function was used in an artificial neural network (ANN) with varied activation functions.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 3","pages":"713 - 721"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-024-01006-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, for the first time the machine learning (ML) based refractive index (n) approach is established depends on the density (ρ) parameter of glasses for a dataset of 2000 oxide glasses to predict refractive index of B2O3-CaO-Li2O-Sb2O3 glasses. Density of the investigated glasses varied from 2.56 to 2.97 gm/cm3. The corresponding refractive index was changed from 2.540 to 2.405. The refractive index prediction based on density parameter derived from the density of glasses and constant ‘K’. For all M-L techniques including gradient descent (GD), artificial neural network (ANN), and random forest regression (RFR), the density factor is used as an independent variable and the experimental refractive index as a dependent variable. The data set of 10,000 oxide glass samples was employed to forecast density using a variety of machine learning approaches. In comparison to other models, the Random forest regression (RFR) model fitted the glass data with the highest R2 value of 0.949 for refractive index prediction and 0.925 for density prediction. For both the prediction of density and refractive index, the R2 is controlled to 0.932 and 0.9223, respectively. The highest R2 values for refractive index and density prediction were gained when the tanh activation function was used in an artificial neural network (ANN) with varied activation functions.

Abstract Image

利用机器学习技术预测用 Sb2O3 增强的透明 B2O3-CaO-Li2O 玻璃的线性折射率和密度
在本研究中,首次建立了基于机器学习(ML)的折射率(n)方法,该方法取决于 2000 种氧化物玻璃数据集中玻璃的密度(ρ)参数,用于预测 B2O3-CaO-Li2O-Sb2O3 玻璃的折射率。所研究玻璃的密度在 2.56 至 2.97 gm/cm3 之间变化。相应的折射率从 2.540 变为 2.405。折射率的预测基于从玻璃密度和常数 "K "得出的密度参数。所有 M-L 技术,包括梯度下降(GD)、人工神经网络(ANN)和随机森林回归(RFR),都将密度因子作为自变量,将实验折射率作为因变量。利用 10,000 个氧化物玻璃样本的数据集,采用各种机器学习方法预测密度。与其他模型相比,随机森林回归(RFR)模型对玻璃数据的拟合度最高,折射率预测的 R2 值为 0.949,密度预测的 R2 值为 0.925。在预测密度和折射率时,R2 值分别控制在 0.932 和 0.9223。在具有不同激活函数的人工神经网络(ANN)中使用 tanh 激活函数时,折射率和密度预测的 R2 值最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Australian Ceramic Society
Journal of the Australian Ceramic Society Materials Science-Materials Chemistry
CiteScore
3.70
自引率
5.30%
发文量
123
期刊介绍: Publishes high quality research and technical papers in all areas of ceramic and related materials Spans the broad and growing fields of ceramic technology, material science and bioceramics Chronicles new advances in ceramic materials, manufacturing processes and applications Journal of the Australian Ceramic Society since 1965 Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信