Enhanced measurement precision with continuous interrogation during dynamical decoupling

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jun Zhang, Peng Du, Lei Jing, Peng Xu, Li You, Wenxian Zhang
{"title":"Enhanced measurement precision with continuous interrogation during dynamical decoupling","authors":"Jun Zhang, Peng Du, Lei Jing, Peng Xu, Li You, Wenxian Zhang","doi":"10.1088/1674-1056/ad1985","DOIUrl":null,"url":null,"abstract":"Dynamical decoupling (DD) is normally ineffective when applied to DC measurement. In its straightforward implementation, DD nulls out DC signal as well while suppressing noise. This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles. We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose–Einstein condensate. Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms, respectively, while ambient laboratory level noise is suppressed by DD. Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad1985","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamical decoupling (DD) is normally ineffective when applied to DC measurement. In its straightforward implementation, DD nulls out DC signal as well while suppressing noise. This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles. We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose–Einstein condensate. Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms, respectively, while ambient laboratory level noise is suppressed by DD. Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.
在动态解耦过程中通过连续询问提高测量精度
动态去耦(DD)在直流测量中通常不起作用。在直接实施时,DD 在抑制噪声的同时也会使直流信号无效。这项工作提出了一种相位中继方法,它能够在许多 DD 周期中连续询问直流信号。我们用原子自旋玻色-爱因斯坦凝聚体测量微弱的直流磁场来说明这种方法的功效。对于由 10000 个原子组成的相干自旋态或挤压自旋态,其灵敏度有可能分别接近标准量子极限或海森堡极限,而环境实验室级噪声则会被 DD 所抑制。我们的工作提供了一种切实可行的方法来缓解直流测量中 DD 的局限性,并将在量子传感和量子信息处理研究中找到利用相干性的其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信