Main Properties of the Faddeev Equation for 2 × 2 Operator Matrices

IF 0.5 Q3 MATHEMATICS
T. H. Rasulov, E. B. Dilmurodov
{"title":"Main Properties of the Faddeev Equation for 2 × 2 Operator Matrices","authors":"T. H. Rasulov, E. B. Dilmurodov","doi":"10.3103/s1066369x2312006x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper we consider a <span>\\(2 \\times 2\\)</span> operator matrix <span>\\(H\\)</span>. We construct an analog of the well-known Faddeev equation for the eigenvectors of <span>\\(H\\)</span> and study some important properties of this equation, related with the number of eigenvalues. In particular, the Birman–Schwinger principle for <span>\\(H\\)</span> is proven.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"82 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x2312006x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider a \(2 \times 2\) operator matrix \(H\). We construct an analog of the well-known Faddeev equation for the eigenvectors of \(H\) and study some important properties of this equation, related with the number of eigenvalues. In particular, the Birman–Schwinger principle for \(H\) is proven.

2 × 2 算子矩阵的法德夫方程的主要性质
摘要 在本文中,我们考虑了一个(2 次 2)算子矩阵 \(H\)。我们为 \(H\) 的特征向量构造了一个著名的 Faddeev 方程的类似方程,并研究了这个方程与特征值数量相关的一些重要性质。特别是证明了 \(H\) 的 Birman-Schwinger 原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信