Generalized Integration over Nonrectifiable Flat Curves and Boundary Value Problems

IF 0.5 Q3 MATHEMATICS
D. B. Katz
{"title":"Generalized Integration over Nonrectifiable Flat Curves and Boundary Value Problems","authors":"D. B. Katz","doi":"10.3103/s1066369x23120046","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Two closely related problems are discussed, viz., solving the Riemann boundary value problem for analytic functions and some of their generalizations in the domains of the complex plane with nonrectifiable boundaries and constructing a generalization of the curvilinear integral onto nonrectifiable curves that preserves the properties important for the complex analysis. This review reflects the current state of the topic, with many of the results being quite recent. At the end of the work, a number of unsolved problems are given, each of which can serve as a starting point for scientific research.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23120046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two closely related problems are discussed, viz., solving the Riemann boundary value problem for analytic functions and some of their generalizations in the domains of the complex plane with nonrectifiable boundaries and constructing a generalization of the curvilinear integral onto nonrectifiable curves that preserves the properties important for the complex analysis. This review reflects the current state of the topic, with many of the results being quite recent. At the end of the work, a number of unsolved problems are given, each of which can serve as a starting point for scientific research.

不可修正平曲线上的广义积分和边界值问题
摘要 本文讨论了两个密切相关的问题,即解决解析函数的黎曼边界值问题及其在具有不可修正边界的复平面域中的一些广义化问题,以及构建不可修正曲线上的曲线积分的广义化问题,该问题保留了对复分析非常重要的性质。这篇综述反映了该课题的现状,其中许多成果都是最新的。文末给出了一些尚未解决的问题,每个问题都可以作为科学研究的起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信