Guiomar Delgado Soria, María González, Miguel Luis Crespillo, Jesús Sánchez Prieto, Gastón García
{"title":"Quantification of secondary ion mass spectrometry measurements by using ion‐implanted metallic standards","authors":"Guiomar Delgado Soria, María González, Miguel Luis Crespillo, Jesús Sánchez Prieto, Gastón García","doi":"10.1002/sia.7298","DOIUrl":null,"url":null,"abstract":"This research addresses an analytical methodology to quantify elements of interest in fusion‐relevant materials using secondary ion mass spectrometry (SIMS). For this purpose, internal standards have been fabricated by ion implantation to avoid the well‐known matrix effect of this technique. In particular, chromium has been implanted at an energy of 12 MeV using two fluences in high‐purity iron and tungsten matrices together with Si control substrates. The latter were applied to determine the Cr concentration implanted through experimental and semiempirical methods. Specifically, the IBA technique Rutherford backscattering spectrometry (RBS) provided the quantitative results being 3.1 × 10<jats:sup>19</jats:sup> at/cm<jats:sup>3</jats:sup> and 1.6 × 10<jats:sup>19</jats:sup> at/cm<jats:sup>3</jats:sup> for the high and low dose, respectively. The SIMS depth profiles of Cr for the Fe and W matrices established an ion implantation depth close to 2 μm on both substrates in agreement with the calculations previously performed by Stopping and Range of Ions in Matter (SRIM) simulations. Correlation between the integration of SIMS profiles and known concentrations of the implanted ion resulted in the calibration curve for each matrix, obtaining the SIMS quantification approach by means of this relative sensitivity factor (RSF). Additionally, a cross‐check of the method by comparing commercial Fe‐Cr alloys with the Cr‐implanted Fe matrices of the present study pointed out the need to produce standards with higher chromium concentrations.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"44 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7298","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research addresses an analytical methodology to quantify elements of interest in fusion‐relevant materials using secondary ion mass spectrometry (SIMS). For this purpose, internal standards have been fabricated by ion implantation to avoid the well‐known matrix effect of this technique. In particular, chromium has been implanted at an energy of 12 MeV using two fluences in high‐purity iron and tungsten matrices together with Si control substrates. The latter were applied to determine the Cr concentration implanted through experimental and semiempirical methods. Specifically, the IBA technique Rutherford backscattering spectrometry (RBS) provided the quantitative results being 3.1 × 1019 at/cm3 and 1.6 × 1019 at/cm3 for the high and low dose, respectively. The SIMS depth profiles of Cr for the Fe and W matrices established an ion implantation depth close to 2 μm on both substrates in agreement with the calculations previously performed by Stopping and Range of Ions in Matter (SRIM) simulations. Correlation between the integration of SIMS profiles and known concentrations of the implanted ion resulted in the calibration curve for each matrix, obtaining the SIMS quantification approach by means of this relative sensitivity factor (RSF). Additionally, a cross‐check of the method by comparing commercial Fe‐Cr alloys with the Cr‐implanted Fe matrices of the present study pointed out the need to produce standards with higher chromium concentrations.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).