MARCO ANTONIO PELLEGRINI, MARIA CHIARA TAMBURINI BELLANI
{"title":"THE -GENERATION OF THE FINITE SIMPLE ODD-DIMENSIONAL ORTHOGONAL GROUPS","authors":"MARCO ANTONIO PELLEGRINI, MARIA CHIARA TAMBURINI BELLANI","doi":"10.1017/s1446788724000016","DOIUrl":null,"url":null,"abstract":"The complete classification of the finite simple groups that are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline2.png\" /> <jats:tex-math> $(2,3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generated is a problem which is still open only for orthogonal groups. Here, we construct <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline3.png\" /> <jats:tex-math> $(2, 3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generators for the finite odd-dimensional orthogonal groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline4.png\" /> <jats:tex-math> $\\Omega _{2k+1}(q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline5.png\" /> <jats:tex-math> $k\\geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a byproduct, we also obtain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline6.png\" /> <jats:tex-math> $(2,3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generators for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline7.png\" /> <jats:tex-math> $\\Omega _{4k}^+(q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline8.png\" /> <jats:tex-math> $k\\geq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>q</jats:italic> odd, and for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline9.png\" /> <jats:tex-math> $\\Omega _{4k+2}^\\pm (q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline10.png\" /> <jats:tex-math> $k\\geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline11.png\" /> <jats:tex-math> $q\\equiv \\pm 1~ \\mathrm {(mod~ 4)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"119 50 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788724000016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The complete classification of the finite simple groups that are $(2,3)$ -generated is a problem which is still open only for orthogonal groups. Here, we construct $(2, 3)$ -generators for the finite odd-dimensional orthogonal groups $\Omega _{2k+1}(q)$ , $k\geq 4$ . As a byproduct, we also obtain $(2,3)$ -generators for $\Omega _{4k}^+(q)$ with $k\geq 3$ and q odd, and for $\Omega _{4k+2}^\pm (q)$ with $k\geq 4$ and $q\equiv \pm 1~ \mathrm {(mod~ 4)}$ .
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society