THE -GENERATION OF THE FINITE SIMPLE ODD-DIMENSIONAL ORTHOGONAL GROUPS

IF 0.5 4区 数学 Q3 MATHEMATICS
MARCO ANTONIO PELLEGRINI, MARIA CHIARA TAMBURINI BELLANI
{"title":"THE -GENERATION OF THE FINITE SIMPLE ODD-DIMENSIONAL ORTHOGONAL GROUPS","authors":"MARCO ANTONIO PELLEGRINI, MARIA CHIARA TAMBURINI BELLANI","doi":"10.1017/s1446788724000016","DOIUrl":null,"url":null,"abstract":"The complete classification of the finite simple groups that are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline2.png\" /> <jats:tex-math> $(2,3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generated is a problem which is still open only for orthogonal groups. Here, we construct <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline3.png\" /> <jats:tex-math> $(2, 3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generators for the finite odd-dimensional orthogonal groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline4.png\" /> <jats:tex-math> $\\Omega _{2k+1}(q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline5.png\" /> <jats:tex-math> $k\\geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a byproduct, we also obtain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline6.png\" /> <jats:tex-math> $(2,3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generators for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline7.png\" /> <jats:tex-math> $\\Omega _{4k}^+(q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline8.png\" /> <jats:tex-math> $k\\geq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>q</jats:italic> odd, and for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline9.png\" /> <jats:tex-math> $\\Omega _{4k+2}^\\pm (q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline10.png\" /> <jats:tex-math> $k\\geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline11.png\" /> <jats:tex-math> $q\\equiv \\pm 1~ \\mathrm {(mod~ 4)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788724000016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The complete classification of the finite simple groups that are $(2,3)$ -generated is a problem which is still open only for orthogonal groups. Here, we construct $(2, 3)$ -generators for the finite odd-dimensional orthogonal groups $\Omega _{2k+1}(q)$ , $k\geq 4$ . As a byproduct, we also obtain $(2,3)$ -generators for $\Omega _{4k}^+(q)$ with $k\geq 3$ and q odd, and for $\Omega _{4k+2}^\pm (q)$ with $k\geq 4$ and $q\equiv \pm 1~ \mathrm {(mod~ 4)}$ .
有限简单奇维正交群的-生成
关于$(2,3)$-生成的有限简单群的完整分类是一个仅对正交群而言尚未解决的问题。在这里,我们为有限奇维正交群 $\Omega _{2k+1}(q)$ , $k\geq 4$ 构建了 $(2, 3)$ 生成器。作为副产品,我们还得到了 $(2,3)$的 $Omega_{4k}^+(q)$的生成器,其中 $k\geq 3$,q 为奇数;以及 $Omega _{4k+2}^\pm (q)$的生成器,其中 $k\geq 4$,$q\equiv \pm 1~ \mathrm {(mod~ 4)}$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信