Study on the whole dynamical fracture process of sandstone samples

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fu Cao, Liping Yang, Lian Li, Yuefeng Li, Qi-zhi Wang, Enlong Liu
{"title":"Study on the whole dynamical fracture process of sandstone samples","authors":"Fu Cao,&nbsp;Liping Yang,&nbsp;Lian Li,&nbsp;Yuefeng Li,&nbsp;Qi-zhi Wang,&nbsp;Enlong Liu","doi":"10.1007/s10704-023-00759-y","DOIUrl":null,"url":null,"abstract":"<div><p>The single cleavage drilled compression specimens of sandstone were impacted by the large-diameter split Hopkinson pressure bar, during which the whole model-I dynamical fracture process was successfully observed. A crack propagation gauge is used to monitor the key time moment of dynamic initiation, propagation, arrest and re-initiation, respectively. The fractal crack extension model is used to analysis the propagation speed of the tortuous crack, and with further combination of the experimental–numerical-analytical method, to determine the dynamic initiation toughness, dynamic propagation toughness, dynamic arrest toughness, and dynamic re-initiation toughness of sandstone. The results show that in the process of crack propagation, the crack propagation path is torturous; and for this curved path, the value of the universal function, which is characterized by the crack’s velocity, is smaller than that with a straight path. The dynamic propagation toughness thus obtained is closer to its real value by using the fractal model. Sandstone’s dynamic initiation toughness is greater than the dynamic arrest toughness, and the dynamic initiation toughness is slightly bigger than the dynamic re-initiation toughness.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 1","pages":"23 - 36"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00759-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The single cleavage drilled compression specimens of sandstone were impacted by the large-diameter split Hopkinson pressure bar, during which the whole model-I dynamical fracture process was successfully observed. A crack propagation gauge is used to monitor the key time moment of dynamic initiation, propagation, arrest and re-initiation, respectively. The fractal crack extension model is used to analysis the propagation speed of the tortuous crack, and with further combination of the experimental–numerical-analytical method, to determine the dynamic initiation toughness, dynamic propagation toughness, dynamic arrest toughness, and dynamic re-initiation toughness of sandstone. The results show that in the process of crack propagation, the crack propagation path is torturous; and for this curved path, the value of the universal function, which is characterized by the crack’s velocity, is smaller than that with a straight path. The dynamic propagation toughness thus obtained is closer to its real value by using the fractal model. Sandstone’s dynamic initiation toughness is greater than the dynamic arrest toughness, and the dynamic initiation toughness is slightly bigger than the dynamic re-initiation toughness.

Abstract Image

Abstract Image

砂岩样本整体动态断裂过程研究
用大直径分体式霍普金森压力棒冲击砂岩单劈裂钻孔压缩试样,成功观测了整个模型-I动态断裂过程。使用裂纹扩展仪分别监测动态起始、扩展、停止和再起始的关键时间点。利用分形裂纹扩展模型分析了迂回裂纹的扩展速度,并进一步结合实验-数值-分析方法,确定了砂岩的动态韧度、动态扩展韧度、动态停滞韧度和动态再启动韧度。结果表明,在裂纹扩展过程中,裂纹的扩展路径是弯曲的;对于这种弯曲路径,以裂纹速度为特征的通用函数值小于直线路径。利用分形模型得到的动态扩展韧性更接近其实际值。砂岩的动态起始韧度大于动态终止韧度,动态起始韧度略大于动态再起始韧度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信