PV Plant Equipment Labels and Layouts Can Be Validated by Analyzing Cloud Motion in Existing Plant Measurements

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Joseph Ranalli;William B. Hobbs
{"title":"PV Plant Equipment Labels and Layouts Can Be Validated by Analyzing Cloud Motion in Existing Plant Measurements","authors":"Joseph Ranalli;William B. Hobbs","doi":"10.1109/JPHOTOV.2024.3366666","DOIUrl":null,"url":null,"abstract":"Large-scale photovoltaic plants collect monitoring and operational data at various spatial scales within the plant (e.g., strings, combiners, and inverters). Manual validation of the spatial position of these plant segments relative to the plant design requires on-site observations that may be prohibitively costly or labor intensive. This article presents a methodology for validating plant segment position based on operational data from the plant. By observing the delay between segment responses to cloud motion, predictions of their relative positions within the plant can be made. The method was demonstrated on combiner-level data from a 20-MW, operational photovoltaic plant in the United States. Several instances of apparently mislabeled combiners were identified from the analysis. A partial validation of 20 combiners was conducted by inspecting the plant, with results showing complete agreement between observation and predictions. Predictions derived from this methodology can serve as the basis for further plant inspection and corrective maintenance.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"14 3","pages":"538-548"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10453268","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10453268/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale photovoltaic plants collect monitoring and operational data at various spatial scales within the plant (e.g., strings, combiners, and inverters). Manual validation of the spatial position of these plant segments relative to the plant design requires on-site observations that may be prohibitively costly or labor intensive. This article presents a methodology for validating plant segment position based on operational data from the plant. By observing the delay between segment responses to cloud motion, predictions of their relative positions within the plant can be made. The method was demonstrated on combiner-level data from a 20-MW, operational photovoltaic plant in the United States. Several instances of apparently mislabeled combiners were identified from the analysis. A partial validation of 20 combiners was conducted by inspecting the plant, with results showing complete agreement between observation and predictions. Predictions derived from this methodology can serve as the basis for further plant inspection and corrective maintenance.
光伏电站设备标签和布局可通过分析现有电站测量中的云运动进行验证
大型光伏电站收集电站内不同空间尺度的监控和运行数据(如组串、合路器和逆变器)。人工验证这些电站区段相对于电站设计的空间位置需要进行现场观测,而现场观测可能成本过高或劳动强度过大。本文介绍了一种基于电站运行数据验证电站分段位置的方法。通过观察分段对云层运动反应之间的延迟,可以预测它们在电厂内的相对位置。该方法在美国一个 20 兆瓦运行中的光伏电站的联合收割机级数据上进行了演示。通过分析发现了几个明显标记错误的联合收割机。通过检查电站,对 20 个联合收割机进行了部分验证,结果显示观察结果与预测结果完全一致。通过该方法得出的预测结果可作为进一步检查电站和纠正维护的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信