Phylogenomic and molecular markers based studies on clarifying the evolutionary relationships among Peptoniphilus species. Identification of several Genus-Level clades of Peptoniphilus species and transfer of some Peptoniphilus species to the genus Aedoeadaptatus
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Phylogenomic and molecular markers based studies on clarifying the evolutionary relationships among Peptoniphilus species. Identification of several Genus-Level clades of Peptoniphilus species and transfer of some Peptoniphilus species to the genus Aedoeadaptatus","authors":"Megha Malhotra , Sarah Bello , Radhey S. Gupta","doi":"10.1016/j.syapm.2024.126499","DOIUrl":null,"url":null,"abstract":"<div><p>To clarify the evolutionary relationships among <em>Peptoniphilus</em> species, whose members show association with increased risk for prostate cancer, detailed phylogenomic and comparative analyses were conducted on their genome sequences. In phylogenetic trees based on core genome proteins and 16S rRNA gene sequences, <em>Peptoniphilus</em> species formed eight distinct clades, with <em>Aedoeadaptatus</em> and <em>Anaerosphaera</em> species branching between them. The observed clades designated as <em>Peptoniphilus sensu stricto</em> (encompassing its type species), Harei, Lacrimalis, Duerdenii, Mikwangii, Stercorisuis, Catoniae and Aedoeadaptatus, show genus level divergence based on 16S rRNA similarity and average amino acid identity (AAI). The Genome Taxonomy Database also assigns most of these clades to distinct taxa. Several <em>Peptoniphilus</em> species (viz. <em>P. coxii</em>, <em>P</em>. <em>ivorii</em>, <em>P</em>. <em>nemausensis</em> and some non-validly published species) grouped reliably with the type species of <em>Aedoeadaptatus</em> (<em>A. acetigenes</em>) and are affiliated to this genus based on 16S rRNA similarity, AAI, and multiple uniquely shared molecular signatures. Hence<em>,</em> we are proposing the transfer of these species into the emended genus <em>Aedoeadaptatus</em>. Our analyses on protein sequences from <em>Peptoniphilus</em> genomes have also identified 54 novel molecular markers consisting of conserved signature indels (CSIs), which are specific for different <em>Peptoniphilus</em> species clades and provide reliable means for their demarcation in molecular terms. Lastly, we also show that based on the shared presence of these CSIs in the genomes of uncharacterized <em>Peptoniphilus</em> spp. (cultured and uncultured), their affiliations to the specific <em>Peptoniphilus</em> clades can be accurately predicted. These results should prove useful in understanding the potential involvement of <em>Peptoniphilus</em>-related species in diseases.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202024000134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To clarify the evolutionary relationships among Peptoniphilus species, whose members show association with increased risk for prostate cancer, detailed phylogenomic and comparative analyses were conducted on their genome sequences. In phylogenetic trees based on core genome proteins and 16S rRNA gene sequences, Peptoniphilus species formed eight distinct clades, with Aedoeadaptatus and Anaerosphaera species branching between them. The observed clades designated as Peptoniphilus sensu stricto (encompassing its type species), Harei, Lacrimalis, Duerdenii, Mikwangii, Stercorisuis, Catoniae and Aedoeadaptatus, show genus level divergence based on 16S rRNA similarity and average amino acid identity (AAI). The Genome Taxonomy Database also assigns most of these clades to distinct taxa. Several Peptoniphilus species (viz. P. coxii, P. ivorii, P. nemausensis and some non-validly published species) grouped reliably with the type species of Aedoeadaptatus (A. acetigenes) and are affiliated to this genus based on 16S rRNA similarity, AAI, and multiple uniquely shared molecular signatures. Hence, we are proposing the transfer of these species into the emended genus Aedoeadaptatus. Our analyses on protein sequences from Peptoniphilus genomes have also identified 54 novel molecular markers consisting of conserved signature indels (CSIs), which are specific for different Peptoniphilus species clades and provide reliable means for their demarcation in molecular terms. Lastly, we also show that based on the shared presence of these CSIs in the genomes of uncharacterized Peptoniphilus spp. (cultured and uncultured), their affiliations to the specific Peptoniphilus clades can be accurately predicted. These results should prove useful in understanding the potential involvement of Peptoniphilus-related species in diseases.