Phylogenomic and molecular markers based studies on clarifying the evolutionary relationships among Peptoniphilus species. Identification of several Genus-Level clades of Peptoniphilus species and transfer of some Peptoniphilus species to the genus Aedoeadaptatus

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Megha Malhotra , Sarah Bello , Radhey S. Gupta
{"title":"Phylogenomic and molecular markers based studies on clarifying the evolutionary relationships among Peptoniphilus species. Identification of several Genus-Level clades of Peptoniphilus species and transfer of some Peptoniphilus species to the genus Aedoeadaptatus","authors":"Megha Malhotra ,&nbsp;Sarah Bello ,&nbsp;Radhey S. Gupta","doi":"10.1016/j.syapm.2024.126499","DOIUrl":null,"url":null,"abstract":"<div><p>To clarify the evolutionary relationships among <em>Peptoniphilus</em> species, whose members show association with increased risk for prostate cancer, detailed phylogenomic and comparative analyses were conducted on their genome sequences. In phylogenetic trees based on core genome proteins and 16S rRNA gene sequences, <em>Peptoniphilus</em> species formed eight distinct clades, with <em>Aedoeadaptatus</em> and <em>Anaerosphaera</em> species branching between them. The observed clades designated as <em>Peptoniphilus sensu stricto</em> (encompassing its type species), Harei, Lacrimalis, Duerdenii, Mikwangii, Stercorisuis, Catoniae and Aedoeadaptatus, show genus level divergence based on 16S rRNA similarity and average amino acid identity (AAI). The Genome Taxonomy Database also assigns most of these clades to distinct taxa. Several <em>Peptoniphilus</em> species (viz. <em>P. coxii</em>, <em>P</em>. <em>ivorii</em>, <em>P</em>. <em>nemausensis</em> and some non-validly published species) grouped reliably with the type species of <em>Aedoeadaptatus</em> (<em>A. acetigenes</em>) and are affiliated to this genus based on 16S rRNA similarity, AAI, and multiple uniquely shared molecular signatures. Hence<em>,</em> we are proposing the transfer of these species into the emended genus <em>Aedoeadaptatus</em>. Our analyses on protein sequences from <em>Peptoniphilus</em> genomes have also identified 54 novel molecular markers consisting of conserved signature indels (CSIs), which are specific for different <em>Peptoniphilus</em> species clades and provide reliable means for their demarcation in molecular terms. Lastly, we also show that based on the shared presence of these CSIs in the genomes of uncharacterized <em>Peptoniphilus</em> spp. (cultured and uncultured), their affiliations to the specific <em>Peptoniphilus</em> clades can be accurately predicted. These results should prove useful in understanding the potential involvement of <em>Peptoniphilus</em>-related species in diseases.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723202024000134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To clarify the evolutionary relationships among Peptoniphilus species, whose members show association with increased risk for prostate cancer, detailed phylogenomic and comparative analyses were conducted on their genome sequences. In phylogenetic trees based on core genome proteins and 16S rRNA gene sequences, Peptoniphilus species formed eight distinct clades, with Aedoeadaptatus and Anaerosphaera species branching between them. The observed clades designated as Peptoniphilus sensu stricto (encompassing its type species), Harei, Lacrimalis, Duerdenii, Mikwangii, Stercorisuis, Catoniae and Aedoeadaptatus, show genus level divergence based on 16S rRNA similarity and average amino acid identity (AAI). The Genome Taxonomy Database also assigns most of these clades to distinct taxa. Several Peptoniphilus species (viz. P. coxii, P. ivorii, P. nemausensis and some non-validly published species) grouped reliably with the type species of Aedoeadaptatus (A. acetigenes) and are affiliated to this genus based on 16S rRNA similarity, AAI, and multiple uniquely shared molecular signatures. Hence, we are proposing the transfer of these species into the emended genus Aedoeadaptatus. Our analyses on protein sequences from Peptoniphilus genomes have also identified 54 novel molecular markers consisting of conserved signature indels (CSIs), which are specific for different Peptoniphilus species clades and provide reliable means for their demarcation in molecular terms. Lastly, we also show that based on the shared presence of these CSIs in the genomes of uncharacterized Peptoniphilus spp. (cultured and uncultured), their affiliations to the specific Peptoniphilus clades can be accurately predicted. These results should prove useful in understanding the potential involvement of Peptoniphilus-related species in diseases.

基于系统发生组和分子标记的研究,以澄清 Peptoniphilus 物种之间的进化关系。鉴定 Peptoniphilus 物种的几个属级支系,并将一些 Peptoniphilus 物种归入 Aedoeadaptatus 属
Peptoniphilus物种的成员与前列腺癌风险增加有关,为了弄清这些物种之间的进化关系,我们对它们的基因组序列进行了详细的系统发生学和比较分析。在基于核心基因组蛋白和 16S rRNA 基因序列的系统发生树中,Peptoniphilus 物种形成了八个不同的支系,Aedoeadaptatus 和 Anaerosphaera 物种在它们之间形成分支。根据 16S rRNA 相似度和平均氨基酸相同度(AAI),观察到的支系被命名为严格意义上的 Peptoniphilus(包括其模式种)、Harei、Lacrimalis、Duerdenii、Mikwangii、Stercorisuis、Catoniae 和 Aedoeadaptatus,显示出属一级的分化。基因组分类数据库(Genome Taxonomy Database)也将这些支系中的大多数归入不同的类群。根据 16S rRNA 相似性、AAI 和多个唯一共享的分子特征,几个 Peptoniphilus 物种(即 P. coxii、P. ivorii、P. nemausensis 和一些未有效发表的物种)与 Aedoeadaptatus 的模式种(A. acetigenes)可靠分组,并隶属于该属。因此,我们建议将这些物种转入修正后的 Aedoeadaptatus 属。我们对 Peptoniphilus 基因组蛋白质序列的分析还发现了 54 个新的分子标记,这些标记由保守的特征性嵌段(CSIs)组成,对不同的 Peptoniphilus 物种支系具有特异性,为从分子角度划分这些支系提供了可靠的方法。最后,我们还表明,根据这些 CSIs 在未定性的 Peptoniphilus 属(培养的和未培养的)基因组中的共同存在,可以准确预测它们隶属于特定的 Peptoniphilus 支系。这些结果将有助于了解与 Peptoniphilus 相关的物种在疾病中的潜在参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信