Maximizing selectivity and activity in the catalytic reduction of nitrates with formic acid under optimal pH conditions

Fernanda Miranda Zoppas , Nicolás Sacco , Thiago Beltrame , Faheem Akhter , Eduardo Miró , Fernanda Albana Marchesini
{"title":"Maximizing selectivity and activity in the catalytic reduction of nitrates with formic acid under optimal pH conditions","authors":"Fernanda Miranda Zoppas ,&nbsp;Nicolás Sacco ,&nbsp;Thiago Beltrame ,&nbsp;Faheem Akhter ,&nbsp;Eduardo Miró ,&nbsp;Fernanda Albana Marchesini","doi":"10.1016/j.nxsust.2024.100030","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into the catalytic reduction of nitrate in water using a Pd 1(wt%) In 0.25(wt%) catalyst supported on alumina. Investigating the influence of formic acid concentration, pH control, and catalyst characteristics on performance and selectivity, we find that higher formic acid concentrations boost initial reaction rates until saturation, impacting activity. Stoichiometric formic acid concentration strikes the best balance between activity and N<sub>2</sub> selectivity. Comparative studies with hydrogen highlight formic acid's unique role in nitrate reduction. pH control using formic acid ensures full nitrate conversion, highlighting its dual role as a pH regulator and reducing agent. Additionally, the study uncovers a volcano-type behavior and surface properties affecting catalytic activity. Characterization through XPS, XRD, and SEM techniques provides valuable insights into the catalyst's composition and distribution. This comprehensive investigation sheds light on key parameters influencing catalytic nitrate reduction, guiding optimal water treatment processes. The economically advantageous and efficient (Pd, In)-based catalyst emerges as a promising solution for nitrate removal applications, addressing global water contamination challenges.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000072/pdfft?md5=9c3b10c901e5953fbf2d3ba62e99fd91&pid=1-s2.0-S2949823624000072-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949823624000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the catalytic reduction of nitrate in water using a Pd 1(wt%) In 0.25(wt%) catalyst supported on alumina. Investigating the influence of formic acid concentration, pH control, and catalyst characteristics on performance and selectivity, we find that higher formic acid concentrations boost initial reaction rates until saturation, impacting activity. Stoichiometric formic acid concentration strikes the best balance between activity and N2 selectivity. Comparative studies with hydrogen highlight formic acid's unique role in nitrate reduction. pH control using formic acid ensures full nitrate conversion, highlighting its dual role as a pH regulator and reducing agent. Additionally, the study uncovers a volcano-type behavior and surface properties affecting catalytic activity. Characterization through XPS, XRD, and SEM techniques provides valuable insights into the catalyst's composition and distribution. This comprehensive investigation sheds light on key parameters influencing catalytic nitrate reduction, guiding optimal water treatment processes. The economically advantageous and efficient (Pd, In)-based catalyst emerges as a promising solution for nitrate removal applications, addressing global water contamination challenges.

在最佳 pH 值条件下最大限度地提高甲酸催化还原硝酸盐的选择性和活性
本研究深入探讨了使用以氧化铝为载体的 Pd 1(wt%) In 0.25(wt%) 催化剂催化还原水中硝酸盐的过程。通过研究甲酸浓度、pH 值控制和催化剂特性对性能和选择性的影响,我们发现较高的甲酸浓度会提高初始反应速率直至饱和,从而影响活性。化学计量甲酸浓度在活性和 N2 选择性之间达到了最佳平衡。与氢气的比较研究突出了甲酸在硝酸盐还原过程中的独特作用。 使用甲酸控制 pH 值可确保硝酸盐的完全转化,突出了甲酸作为 pH 值调节剂和还原剂的双重作用。此外,研究还发现了影响催化活性的火山型行为和表面特性。通过 XPS、XRD 和 SEM 技术进行表征,可以深入了解催化剂的组成和分布。这项全面的研究揭示了影响催化硝酸盐还原的关键参数,为优化水处理工艺提供了指导。这种具有经济优势的高效(钯、铟)基催化剂有望成为硝酸盐去除应用的解决方案,从而应对全球水污染的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信