{"title":"A short combinatorial proof of dimension identities of Erickson and Hunziker","authors":"Nishu Kumari","doi":"10.1016/j.jcta.2024.105883","DOIUrl":null,"url":null,"abstract":"<div><p>In a recent paper (<span>arXiv:2301.09744</span><svg><path></path></svg>), Erickson and Hunziker consider partitions in which the arm–leg difference is an arbitrary constant <em>m</em>. In previous works, these partitions are called <span><math><mo>(</mo><mo>−</mo><mi>m</mi><mo>)</mo></math></span>-asymmetric partitions. Regarding these partitions and their conjugates as highest weights, they prove an identity yielding an infinite family of dimension equalities between <span><math><msub><mrow><mi>gl</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>gl</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>m</mi></mrow></msub></math></span> modules. Their proof proceeds by the manipulations of the hook content formula. We give a simple combinatorial proof of their result.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"205 ","pages":"Article 105883"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000220","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a recent paper (arXiv:2301.09744), Erickson and Hunziker consider partitions in which the arm–leg difference is an arbitrary constant m. In previous works, these partitions are called -asymmetric partitions. Regarding these partitions and their conjugates as highest weights, they prove an identity yielding an infinite family of dimension equalities between and modules. Their proof proceeds by the manipulations of the hook content formula. We give a simple combinatorial proof of their result.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.