Cheap and efficient strategy for photocatalytic degradation of ionic liquids by La/Ce-codoped TiO2@PAM composites.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Honglian Liang, Jianli Jiao, Danyang Dou, Siyu Li
{"title":"Cheap and efficient strategy for photocatalytic degradation of ionic liquids by La/Ce-codoped TiO<sub>2</sub>@PAM composites.","authors":"Honglian Liang, Jianli Jiao, Danyang Dou, Siyu Li","doi":"10.2166/wst.2024.026","DOIUrl":null,"url":null,"abstract":"<p><p>Ionic liquids are regarded as green solvents mainly due to their non-volatile and easy regeneration and recycling properties. However, ionic liquids have negative effects on the environment and human health, especially alkyl imidazole ionic liquids are more toxic than traditional organic solutions. Studies on the toxicology, ecotoxicology, and degradation of ionic liquids are rarely found in the literature. Here, we prepared the cheap La and Ce-codoped TiO<sub>2</sub>@PAM (polyacrylamide) composite microspheres with a simple procedure for the first time to degrade three kinds of imidazole ionic liquids with high efficiency. The experimental results show that the composite La (0.25%) and Ce (0.15%)-codoped TiO<sub>2</sub>@PAM composite microspheres with calcination temperature of 450 °C had a high photocatalytic activity for 1-butyl-3-methyl imidazolium hexafluorophosphate, 1-hexyl-3-methyl imidazolium hexafluorophosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate with the concentration of 10 mg/L. The photocatalysis degradation extent of the three ionic liquids is 97.4, 91.2, and 88.5% at 90 min. This work opened a new route for the simple preparation of cheap composite microspheres in the photocatalytic degradation of ionic liquids with a high efficiency.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2024_026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.026","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic liquids are regarded as green solvents mainly due to their non-volatile and easy regeneration and recycling properties. However, ionic liquids have negative effects on the environment and human health, especially alkyl imidazole ionic liquids are more toxic than traditional organic solutions. Studies on the toxicology, ecotoxicology, and degradation of ionic liquids are rarely found in the literature. Here, we prepared the cheap La and Ce-codoped TiO2@PAM (polyacrylamide) composite microspheres with a simple procedure for the first time to degrade three kinds of imidazole ionic liquids with high efficiency. The experimental results show that the composite La (0.25%) and Ce (0.15%)-codoped TiO2@PAM composite microspheres with calcination temperature of 450 °C had a high photocatalytic activity for 1-butyl-3-methyl imidazolium hexafluorophosphate, 1-hexyl-3-methyl imidazolium hexafluorophosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate with the concentration of 10 mg/L. The photocatalysis degradation extent of the three ionic liquids is 97.4, 91.2, and 88.5% at 90 min. This work opened a new route for the simple preparation of cheap composite microspheres in the photocatalytic degradation of ionic liquids with a high efficiency.

用 La/Ce-codoped TiO2@PAM 复合材料光催化降解离子液体的廉价高效策略。
离子液体被视为绿色溶剂,主要是由于其不挥发、易于再生和循环利用的特性。然而,离子液体对环境和人类健康有负面影响,尤其是烷基咪唑离子液体比传统的有机溶液毒性更大。有关离子液体的毒理学、生态毒理学和降解的研究在文献中很少见。在此,我们首次采用简单的方法制备了廉价的La和Ce掺杂TiO2@PAM(聚丙烯酰胺)复合微球,可高效降解三种咪唑离子液体。实验结果表明,煅烧温度为450 ℃的La(0.25%)和Ce(0.15%)掺杂TiO2@PAM复合微球对浓度为10 mg/L的1-丁基-3-甲基咪唑六氟磷酸盐、1-己基-3-甲基咪唑六氟磷酸盐和1-辛基-3-甲基咪唑六氟磷酸盐具有较高的光催化活性。三种离子液体在 90 分钟内的光催化降解率分别为 97.4%、91.2% 和 88.5%。这项工作为简单制备廉价的复合微球高效光催化降解离子液体开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信