V H Avilés‐Rosas, E A Rendón‐Ochoa, T Hernández-Flores, M Flores-León, C Arias, E Galarraga, J Bargas
{"title":"Role of M<sub>4</sub> -receptor cholinergic signaling in direct pathway striatal projection neurons during dopamine depletion.","authors":"V H Avilés‐Rosas, E A Rendón‐Ochoa, T Hernández-Flores, M Flores-León, C Arias, E Galarraga, J Bargas","doi":"10.1002/syn.22287","DOIUrl":null,"url":null,"abstract":"<p><p>Direct pathway striatal projection neurons (dSPNs) are characterized by the expression of dopamine (DA) class 1 receptors (D<sub>1</sub> R), as well as cholinergic muscarinic M<sub>1</sub> and M<sub>4</sub> receptors (M<sub>1</sub> R, M<sub>4</sub> R). D<sub>1</sub> R enhances neuronal firing through phosphorylation of voltage-gate calcium channels (Ca<sub>V</sub> 1 Ca<sup>2+</sup> channels) activating Gs proteins and protein kinase A (PKA). Concurrently, PKA suppresses phosphatase PP-1 through DARPP-32, thus extending this facilitatory modulation. M<sub>1</sub> R also influences Ca<sup>2+</sup> channels in SPNs through Gq proteins and protein kinase C. However, the signaling mechanisms of M<sub>4</sub> R in dSPNs are less understood. Two pathways are attributed to M<sub>4</sub> R: an inhibitory one through Gi/o proteins, and a facilitatory one via the cyclin Cdk5. Our study reveals that a previously observed facilitatory modulation via Ca<sub>V</sub> 1 Ca<sup>2+</sup> channels is linked to the Cdk5 pathway in dSPNs. This result could be significant in treating parkinsonism. Therefore, we questioned whether this effect persists post DA-depletion in experimental parkinsonism. Our findings indicate that in such conditions, M<sub>4</sub> R activation leads to a decrease in Ca<sup>2+</sup> current and an increased M<sub>4</sub> R protein level, contrasting with the control response. Nevertheless, parkinsonian and control actions are inhibited by the Cdk5 inhibitor roscovitine, suggesting Cdk5's role in both conditions. Cdk5 may activate PP-1 via PKA inhibition in DA depletion. Indeed, we found that inhibiting PP-1 restores control M<sub>4</sub> R actions, implying that PP-1 is overly active via M<sub>4</sub> Rs in DA-depleted condition. These insights contribute to understanding how DA-depletion alters modulatory signaling in striatal neurons. Additional working hypotheses are discussed.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"78 2","pages":"e22287"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.22287","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Direct pathway striatal projection neurons (dSPNs) are characterized by the expression of dopamine (DA) class 1 receptors (D1 R), as well as cholinergic muscarinic M1 and M4 receptors (M1 R, M4 R). D1 R enhances neuronal firing through phosphorylation of voltage-gate calcium channels (CaV 1 Ca2+ channels) activating Gs proteins and protein kinase A (PKA). Concurrently, PKA suppresses phosphatase PP-1 through DARPP-32, thus extending this facilitatory modulation. M1 R also influences Ca2+ channels in SPNs through Gq proteins and protein kinase C. However, the signaling mechanisms of M4 R in dSPNs are less understood. Two pathways are attributed to M4 R: an inhibitory one through Gi/o proteins, and a facilitatory one via the cyclin Cdk5. Our study reveals that a previously observed facilitatory modulation via CaV 1 Ca2+ channels is linked to the Cdk5 pathway in dSPNs. This result could be significant in treating parkinsonism. Therefore, we questioned whether this effect persists post DA-depletion in experimental parkinsonism. Our findings indicate that in such conditions, M4 R activation leads to a decrease in Ca2+ current and an increased M4 R protein level, contrasting with the control response. Nevertheless, parkinsonian and control actions are inhibited by the Cdk5 inhibitor roscovitine, suggesting Cdk5's role in both conditions. Cdk5 may activate PP-1 via PKA inhibition in DA depletion. Indeed, we found that inhibiting PP-1 restores control M4 R actions, implying that PP-1 is overly active via M4 Rs in DA-depleted condition. These insights contribute to understanding how DA-depletion alters modulatory signaling in striatal neurons. Additional working hypotheses are discussed.
期刊介绍:
SYNAPSE publishes articles concerned with all aspects of synaptic structure and function. This includes neurotransmitters, neuropeptides, neuromodulators, receptors, gap junctions, metabolism, plasticity, circuitry, mathematical modeling, ion channels, patch recording, single unit recording, development, behavior, pathology, toxicology, etc.