Disrupted Tuzzerella abundance and impaired L-glutamine levels induce Treg accumulation in ovarian endometriosis: a comprehensive multi-omics analysis.

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Yichen Chen, Lingfang Ye, Jue Zhu, Liang Chen, Huan Chen, Yuhui Sun, Yishen Rong, Jing Zhang
{"title":"Disrupted Tuzzerella abundance and impaired L-glutamine levels induce Treg accumulation in ovarian endometriosis: a comprehensive multi-omics analysis.","authors":"Yichen Chen, Lingfang Ye, Jue Zhu, Liang Chen, Huan Chen, Yuhui Sun, Yishen Rong, Jing Zhang","doi":"10.1007/s11306-023-02072-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The microbial community plays a crucial role in the pathological microenvironment. However, the structure of the microbial community within endometriotic lesions and its impact on the microenvironment is still limited.</p><p><strong>Methods: </strong>All 55 tissue samples, including ovarian ectopic (OEMs) and normal (NE) endometrium, were subjected to 16S rRNA sequencing, metabolomic and proteomic analysis.</p><p><strong>Results: </strong>We found the abundance of Tuzzerella is significantly lower in OEMs compared to NE tissue (p < 0.01). We selected samples from these two groups that exhibited the most pronounced difference in Tuzzerella abundance for further metabolomic and proteomic analysis. Our findings indicated that endometriotic lesions were associated with a decrease in L-Glutamine levels. However, proteomic analysis revealed a significant upregulation of proteins related to the complement pathway, including C3, C7, C1S, CLU, and A2M. Subsequent metabolic and protein correlation predictions demonstrated a negative regulation between L-Glutamine and C7. In vitro experiments further confirmed that high concentrations of Glutamine significantly inhibit C7 protein expression. Additionally, immune cell infiltration analysis, multiplex immunofluorescence, and multifactorial testing demonstrated a positive correlation between C7 expression and the infiltration of regulatory T cells (Tregs) in ectopic lesions, while L-Glutamine was found to negatively regulate the expression of chemotactic factors for Tregs.</p><p><strong>Conclusion: </strong>In this study, we found a clear multi-omics pathway alteration, \"Tuzzerella (microbe)-L-Glutamine (metabolite)-C7 (protein),\" which affects the infiltration of Tregs in endometriotic lesions. Our findings provide insights into endometriosis classification and personalized treatment strategies based on microbial structures.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 2","pages":"32"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-023-02072-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The microbial community plays a crucial role in the pathological microenvironment. However, the structure of the microbial community within endometriotic lesions and its impact on the microenvironment is still limited.

Methods: All 55 tissue samples, including ovarian ectopic (OEMs) and normal (NE) endometrium, were subjected to 16S rRNA sequencing, metabolomic and proteomic analysis.

Results: We found the abundance of Tuzzerella is significantly lower in OEMs compared to NE tissue (p < 0.01). We selected samples from these two groups that exhibited the most pronounced difference in Tuzzerella abundance for further metabolomic and proteomic analysis. Our findings indicated that endometriotic lesions were associated with a decrease in L-Glutamine levels. However, proteomic analysis revealed a significant upregulation of proteins related to the complement pathway, including C3, C7, C1S, CLU, and A2M. Subsequent metabolic and protein correlation predictions demonstrated a negative regulation between L-Glutamine and C7. In vitro experiments further confirmed that high concentrations of Glutamine significantly inhibit C7 protein expression. Additionally, immune cell infiltration analysis, multiplex immunofluorescence, and multifactorial testing demonstrated a positive correlation between C7 expression and the infiltration of regulatory T cells (Tregs) in ectopic lesions, while L-Glutamine was found to negatively regulate the expression of chemotactic factors for Tregs.

Conclusion: In this study, we found a clear multi-omics pathway alteration, "Tuzzerella (microbe)-L-Glutamine (metabolite)-C7 (protein)," which affects the infiltration of Tregs in endometriotic lesions. Our findings provide insights into endometriosis classification and personalized treatment strategies based on microbial structures.

Abstract Image

卵巢子宫内膜异位症中Tuzzerella丰度紊乱和L-谷氨酰胺水平受损诱导Treg聚集:一项全面的多组学分析。
简介微生物群落在病理微环境中起着至关重要的作用。然而,人们对子宫内膜异位症病灶内微生物群落的结构及其对微环境的影响的了解仍然有限:方法:对所有 55 份组织样本(包括卵巢异位(OEMs)和正常(NE)子宫内膜)进行 16S rRNA 测序、代谢组学和蛋白质组学分析:结果:我们发现,与正常子宫内膜组织相比,异位子宫内膜组织中Tuzzerella的丰度明显较低(p 结论:异位子宫内膜组织中Tuzzerella的丰度明显高于正常子宫内膜组织:在这项研究中,我们发现了 "Tuzzerella(微生物)-L-谷氨酰胺(代谢物)-C7(蛋白质)"这一明确的多组学通路改变,它会影响子宫内膜异位症病变中 Tregs 的浸润。我们的发现为子宫内膜异位症的分类和基于微生物结构的个性化治疗策略提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信