Patrick A Massey, Wayne Scalisi, Carver Montgomery, Drayton Daily, James Robinson, Giovanni F Solitro
{"title":"Biomechanical Comparison of All-Suture, All-Inside Meniscus Repair Devices in a Human Cadaveric Meniscus Model.","authors":"Patrick A Massey, Wayne Scalisi, Carver Montgomery, Drayton Daily, James Robinson, Giovanni F Solitro","doi":"10.1177/19476035241234315","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveNewer all-suture, all-inside meniscus repair devices utilize soft suture anchors. The purpose of this study was to compare the biomechanical performance of 4 meniscus repair devices in human cadaver menisci: the JuggerStitch (all-suture, all-inside), the FiberStitch (all-suture, all-inside), a polyether ether ketone (PEEK) all-inside, and an inside-out device.DesignForty human cadaver menisci were tested after creating 20 mm longitudinal tears in the posterior meniscus. Each knee was randomized to 1 of 4 meniscus repair groups: JuggerStitch (all-suture, all-inside), FiberStitch (all-suture, all-inside), FAST-FIX 360 (PEEK-based anchor all-inside), and inside-out (with Broadband<sup>TM</sup> tape meniscus needles). For each meniscus, 2 devices were used to prepare vertical mattress repair construct. The specimens were tested by pre-conditioning 20 cycles between 5 N and 30 N and then the tear diastasis was measured, followed by distraction to failure phase after imposing a displacement at a rate of 0.5 mm/s.ResultsTen menisci were tested in each of the 4 groups. After pre-conditioning, there was no significant difference in the gap formation among groups (<i>P</i> = 0.212). The average failure load for the JuggerStitch, FiberStitch, PEEK all-inside, and inside-out was 384 N, 311 N, 207 N, and 261 N, respectively, with a significant difference between groups (<i>P</i> = 0.034). <i>Post hoc</i> analysis showed the JuggerStitch failure load was higher than the PEEK all-inside and inside-out (<i>P</i> = 0.005, and <i>P</i> = 0.045, respectively). There was no significant difference between the failure load of the JuggerStitch and FiberStitch (<i>P</i> = 0.225).ConclusionThe JuggerStitch all-suture device, FiberStitch all-suture device, PEEK all-inside, and inside-out devices have similar biomechanical properties for gapping and stiffness. The JuggerStitch all-suture, all-inside device has superior failure load compared with the PEEK all-inside and inside-out repair for longitudinal meniscus tear repair.</p>","PeriodicalId":9626,"journal":{"name":"CARTILAGE","volume":" ","pages":"150-158"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569520/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CARTILAGE","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/19476035241234315","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveNewer all-suture, all-inside meniscus repair devices utilize soft suture anchors. The purpose of this study was to compare the biomechanical performance of 4 meniscus repair devices in human cadaver menisci: the JuggerStitch (all-suture, all-inside), the FiberStitch (all-suture, all-inside), a polyether ether ketone (PEEK) all-inside, and an inside-out device.DesignForty human cadaver menisci were tested after creating 20 mm longitudinal tears in the posterior meniscus. Each knee was randomized to 1 of 4 meniscus repair groups: JuggerStitch (all-suture, all-inside), FiberStitch (all-suture, all-inside), FAST-FIX 360 (PEEK-based anchor all-inside), and inside-out (with BroadbandTM tape meniscus needles). For each meniscus, 2 devices were used to prepare vertical mattress repair construct. The specimens were tested by pre-conditioning 20 cycles between 5 N and 30 N and then the tear diastasis was measured, followed by distraction to failure phase after imposing a displacement at a rate of 0.5 mm/s.ResultsTen menisci were tested in each of the 4 groups. After pre-conditioning, there was no significant difference in the gap formation among groups (P = 0.212). The average failure load for the JuggerStitch, FiberStitch, PEEK all-inside, and inside-out was 384 N, 311 N, 207 N, and 261 N, respectively, with a significant difference between groups (P = 0.034). Post hoc analysis showed the JuggerStitch failure load was higher than the PEEK all-inside and inside-out (P = 0.005, and P = 0.045, respectively). There was no significant difference between the failure load of the JuggerStitch and FiberStitch (P = 0.225).ConclusionThe JuggerStitch all-suture device, FiberStitch all-suture device, PEEK all-inside, and inside-out devices have similar biomechanical properties for gapping and stiffness. The JuggerStitch all-suture, all-inside device has superior failure load compared with the PEEK all-inside and inside-out repair for longitudinal meniscus tear repair.
期刊介绍:
CARTILAGE publishes articles related to the musculoskeletal system with particular attention to cartilage repair, development, function, degeneration, transplantation, and rehabilitation. The journal is a forum for the exchange of ideas for the many types of researchers and clinicians involved in cartilage biology and repair. A primary objective of CARTILAGE is to foster the cross-fertilization of the findings between clinical and basic sciences throughout the various disciplines involved in cartilage repair.
The journal publishes full length original manuscripts on all types of cartilage including articular, nasal, auricular, tracheal/bronchial, and intervertebral disc fibrocartilage. Manuscripts on clinical and laboratory research are welcome. Review articles, editorials, and letters are also encouraged. The ICRS envisages CARTILAGE as a forum for the exchange of knowledge among clinicians, scientists, patients, and researchers.
The International Cartilage Repair Society (ICRS) is dedicated to promotion, encouragement, and distribution of fundamental and applied research of cartilage in order to permit a better knowledge of function and dysfunction of articular cartilage and its repair.