{"title":"Cover Image, Volume 2, Number 1, February 2024","authors":"Wuwei Mo, Joel Jie Foo, Wee-Jun Ong","doi":"10.1002/elt2.37","DOIUrl":null,"url":null,"abstract":"<p>2D carbon-based heterostructured electrocatalysts have recently emerged as one of the promising nanomaterials to drive sustainable hydrogen production and combat climate change. Unlike conventional noble metal-based catalysts, such heterostructures made from carbon allotropes and transition metals prevail due to their remarkable activities, cost-effectiveness, and earth abundance. Particularly, this review (DOI: 10.1002/elt2.20) summarizes state-of-the-art 2D carbon nanosheet-, graphene-, and graphdiyne-based heterostructured electrocatalysts towards hydrogen evolution and water splitting from both experimental and computational aspects. Besides, novel structural engineering and facile synthesis strategies are also spotlighted, which are vital to greatly enhance electrocatalytic performances.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.37","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
2D carbon-based heterostructured electrocatalysts have recently emerged as one of the promising nanomaterials to drive sustainable hydrogen production and combat climate change. Unlike conventional noble metal-based catalysts, such heterostructures made from carbon allotropes and transition metals prevail due to their remarkable activities, cost-effectiveness, and earth abundance. Particularly, this review (DOI: 10.1002/elt2.20) summarizes state-of-the-art 2D carbon nanosheet-, graphene-, and graphdiyne-based heterostructured electrocatalysts towards hydrogen evolution and water splitting from both experimental and computational aspects. Besides, novel structural engineering and facile synthesis strategies are also spotlighted, which are vital to greatly enhance electrocatalytic performances.