Advances in seismological methods for characterizing fault zone structure

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences
Yan Cai , Jianping Wu , Yaning Liu , Shijie Gao
{"title":"Advances in seismological methods for characterizing fault zone structure","authors":"Yan Cai ,&nbsp;Jianping Wu ,&nbsp;Yaning Liu ,&nbsp;Shijie Gao","doi":"10.1016/j.eqs.2024.01.019","DOIUrl":null,"url":null,"abstract":"<div><p>Large earthquakes frequently occur along complex fault systems. Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures. We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures, including seismic tomography, fault zone seismic wave analysis, and seismicity analysis. Observational conditions limit our current ability to fully characterize fault zones, for example, insufficient imaging resolution to discern small-scale anomalies, incomplete capture of crucial fault zone seismic waves, and limited precision in event location accuracy. Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures. Moreover, we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array. We found that utilizing a dense seismic array can identify small-scale features within fault zones, aiding in the interpretation of fault zone geometry and material properties.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"37 2","pages":"Pages 122-138"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000235/pdfft?md5=157007a99f8ccc19826cb362aefaf71a&pid=1-s2.0-S1674451924000235-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451924000235","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Large earthquakes frequently occur along complex fault systems. Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures. We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures, including seismic tomography, fault zone seismic wave analysis, and seismicity analysis. Observational conditions limit our current ability to fully characterize fault zones, for example, insufficient imaging resolution to discern small-scale anomalies, incomplete capture of crucial fault zone seismic waves, and limited precision in event location accuracy. Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures. Moreover, we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array. We found that utilizing a dense seismic array can identify small-scale features within fault zones, aiding in the interpretation of fault zone geometry and material properties.

确定断层带结构特征的地震学方法的进展
大地震经常沿着复杂的断层系统发生。要了解地震破裂和断层的长期演化,需要对断层带结构的几何和材料特性进行约束。我们全面概述了用于研究断层带结构的地震学方法的最新进展,包括地震层析成像、断层带地震波分析和震度分析。观测条件限制了我们目前全面描述断层带特征的能力,例如,成像分辨率不足,无法辨别小尺度异常,无法完全捕捉关键的断层带地震波,以及事件定位精度有限。密集地震阵列可以克服这些限制,对断层带结构进行更详细的研究。此外,我们基于密集地震阵列采集的数据,对青藏高原东南缘安宁河-小江断裂带的结构提出了新的见解。我们发现,利用密集地震阵列可以识别断层带内的小尺度特征,有助于解释断层带的几何形状和物质属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信