{"title":"IGF-Fit: Implicit gradient field fitting for point cloud normal estimation","authors":"Bowen Lyu , Li-Yong Shen , Chun-Ming Yuan","doi":"10.1016/j.gmod.2024.101214","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce IGF-Fit, a novel method for estimating surface normals from point clouds with varying noise and density. Unlike previous approaches that rely on point-wise weights and explicit representations, IGF-Fit employs a network that learns an implicit representation and uses derivatives to predict normals. The input patch serves as both a shape latent vector and query points for fitting the implicit representation. To handle noisy input, we introduce a novel noise transformation module with a training strategy for noise classification and latent vector bias prediction. Our experiments on synthetic and real-world scan datasets demonstrate the effectiveness of IGF-Fit, achieving state-of-the-art performance on both noise-free and density-varying data.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"133 ","pages":"Article 101214"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S152407032400002X/pdfft?md5=49f2d24bca30ab2fb9811c74fa197c78&pid=1-s2.0-S152407032400002X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S152407032400002X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce IGF-Fit, a novel method for estimating surface normals from point clouds with varying noise and density. Unlike previous approaches that rely on point-wise weights and explicit representations, IGF-Fit employs a network that learns an implicit representation and uses derivatives to predict normals. The input patch serves as both a shape latent vector and query points for fitting the implicit representation. To handle noisy input, we introduce a novel noise transformation module with a training strategy for noise classification and latent vector bias prediction. Our experiments on synthetic and real-world scan datasets demonstrate the effectiveness of IGF-Fit, achieving state-of-the-art performance on both noise-free and density-varying data.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.