Synthesis of high-surface-area mesoporous SnO2 nanomaterials using carbon template

Monsur Islam , Kunal Mondal , Vinay Kishnani , Ankur Gupta , Ashutosh Sharma
{"title":"Synthesis of high-surface-area mesoporous SnO2 nanomaterials using carbon template","authors":"Monsur Islam ,&nbsp;Kunal Mondal ,&nbsp;Vinay Kishnani ,&nbsp;Ankur Gupta ,&nbsp;Ashutosh Sharma","doi":"10.1016/j.nxnano.2024.100057","DOIUrl":null,"url":null,"abstract":"<div><p>Metal oxide porous nanomaterials are of great interest across scientific fields due to their intriguing properties, allowing their usage from lab-scale research to industrial applications. However, the production of high surface area metal oxide nanomaterials still poses significant challenges. This study introduces a novel method for synthesizing highly porous tin oxide (SnO<sub>2</sub>) nanostructures using carbon as the template material. The synthesis process includes the formation of a precursor composite containing resorcinol-formaldehyde gel and a tin oxide precursor, which is first carbonized to convert the resorcinol-formaldehyde into a porous three-dimensional carbon framework. This framework acts as a scaffold for the nucleation of SnO<sub>2</sub> nanoparticles. Subsequent oxidation selectively removes the carbon template, yielding highly porous SnO<sub>2</sub> nanomaterials. Electron microscopy analysis shows that the nanomaterials feature a particle size with average diameter of ∼30 nm, whereas Gas adsorption-desorption characterization indicates pronounced mesoporosity, with a pore size of 3 nm and a specific surface area of 476 m<sup>2</sup>/g. The enhanced surface area surpasses the previously reported studies on porous SnO<sub>2</sub>. This is significant considering the easy production process of the nanomaterials, which signifies its potential for large-scale production. Furthermore, this approach offers versatility, as different materials can replace the carbon component, allowing for tailored nanostructure design and enhanced properties. The resulting materials can offer exciting possibilities in the field of materials science and nanotechnology.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000184/pdfft?md5=8542614656058c2780e3431b468f7ef1&pid=1-s2.0-S2949829524000184-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal oxide porous nanomaterials are of great interest across scientific fields due to their intriguing properties, allowing their usage from lab-scale research to industrial applications. However, the production of high surface area metal oxide nanomaterials still poses significant challenges. This study introduces a novel method for synthesizing highly porous tin oxide (SnO2) nanostructures using carbon as the template material. The synthesis process includes the formation of a precursor composite containing resorcinol-formaldehyde gel and a tin oxide precursor, which is first carbonized to convert the resorcinol-formaldehyde into a porous three-dimensional carbon framework. This framework acts as a scaffold for the nucleation of SnO2 nanoparticles. Subsequent oxidation selectively removes the carbon template, yielding highly porous SnO2 nanomaterials. Electron microscopy analysis shows that the nanomaterials feature a particle size with average diameter of ∼30 nm, whereas Gas adsorption-desorption characterization indicates pronounced mesoporosity, with a pore size of 3 nm and a specific surface area of 476 m2/g. The enhanced surface area surpasses the previously reported studies on porous SnO2. This is significant considering the easy production process of the nanomaterials, which signifies its potential for large-scale production. Furthermore, this approach offers versatility, as different materials can replace the carbon component, allowing for tailored nanostructure design and enhanced properties. The resulting materials can offer exciting possibilities in the field of materials science and nanotechnology.

利用碳模板合成高表面积介孔二氧化锡纳米材料
金属氧化物多孔纳米材料因其引人入胜的特性而备受各科学领域的关注,从实验室规模的研究到工业应用,都可以使用这种材料。然而,高比表面积金属氧化物纳米材料的生产仍然面临巨大挑战。本研究介绍了一种以碳为模板材料合成高多孔氧化锡(SnO2)纳米结构的新方法。合成过程包括形成含有间苯二酚-甲醛凝胶和氧化锡前驱体的前驱体复合材料,首先对其进行碳化,将间苯二酚-甲醛转化为多孔的三维碳框架。这种框架是二氧化锡纳米粒子成核的支架。随后的氧化过程会选择性地去除碳模板,生成高多孔性的二氧化锡纳米材料。电子显微镜分析表明,纳米材料的平均粒径为 30 纳米,而气体吸附-解吸表征则表明其具有明显的介孔性,孔径为 3 纳米,比表面积为 476 平方米/克。比表面积的增大超过了之前关于多孔二氧化锡的研究报告。考虑到这种纳米材料的生产过程非常简单,这意味着它具有大规模生产的潜力,因此意义重大。此外,这种方法还具有多功能性,因为不同的材料可以替代碳成分,从而实现量身定制的纳米结构设计和增强的性能。由此产生的材料可为材料科学和纳米技术领域提供令人兴奋的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信