A Graphical Approach to Visualize and Interpret Biochemically Coupled Biomechanical Models.

IF 1.7 4区 医学 Q4 BIOPHYSICS
Shannon M Flanary, Kara E Peak, Victor H Barocas
{"title":"A Graphical Approach to Visualize and Interpret Biochemically Coupled Biomechanical Models.","authors":"Shannon M Flanary, Kara E Peak, Victor H Barocas","doi":"10.1115/1.4064970","DOIUrl":null,"url":null,"abstract":"<p><p>The last decade has seen the emergence of progressively more complex mechanobiological models, often coupling biochemical and biomechanical components. The complexity of these models makes interpretation difficult, and although computational tools can solve model equations, there is considerable potential value in a simple method to explore the interplay between different model components. Pump and system performance curves, long utilized in centrifugal pump selection and design, inspire the development of a graphical technique to depict visually the performance of biochemically-coupled mechanical models. Our approach is based on a biochemical performance curve (analogous to the classical pump curve) and a biomechanical performance curve (analogous to the system curve). Upon construction of the two curves, their intersection, or lack thereof, describes the coupled model's equilibrium state(s). One can also observe graphically how an applied perturbation shifts one or both curves, and thus how the other component will respond, without rerunning the full model. While the upfront cost of generating the performance curve graphic varies with the efficiency of the model components, the easily interpretable visual depiction of what would otherwise be nonintuitive model behavior is valuable. Herein, we outline how performance curves can be constructed and interpreted for biochemically-coupled biomechanical models and apply the technique to two independent models in the cardiovascular space. The performance curve approach can illustrate and help identify weaknesses in model construction, inform user-applied perturbations and fitting procedures to generate intended behaviors, and improve the efficiency of the model generation and application process.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11005857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064970","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The last decade has seen the emergence of progressively more complex mechanobiological models, often coupling biochemical and biomechanical components. The complexity of these models makes interpretation difficult, and although computational tools can solve model equations, there is considerable potential value in a simple method to explore the interplay between different model components. Pump and system performance curves, long utilized in centrifugal pump selection and design, inspire the development of a graphical technique to depict visually the performance of biochemically-coupled mechanical models. Our approach is based on a biochemical performance curve (analogous to the classical pump curve) and a biomechanical performance curve (analogous to the system curve). Upon construction of the two curves, their intersection, or lack thereof, describes the coupled model's equilibrium state(s). One can also observe graphically how an applied perturbation shifts one or both curves, and thus how the other component will respond, without rerunning the full model. While the upfront cost of generating the performance curve graphic varies with the efficiency of the model components, the easily interpretable visual depiction of what would otherwise be nonintuitive model behavior is valuable. Herein, we outline how performance curves can be constructed and interpreted for biochemically-coupled biomechanical models and apply the technique to two independent models in the cardiovascular space. The performance curve approach can illustrate and help identify weaknesses in model construction, inform user-applied perturbations and fitting procedures to generate intended behaviors, and improve the efficiency of the model generation and application process.

可视化和解释生化耦合生物力学模型的图形方法。
过去十年中,出现了越来越复杂的机械生物学模型,这些模型通常将生物化学和生物力学成分结合在一起。这些模型的复杂性给解释工作带来了困难,尽管计算工具可以求解模型方程,但探索不同模型成分之间相互作用的简单方法仍具有相当大的潜在价值。长期用于离心泵选择和设计的泵和系统性能曲线启发了我们开发一种图形技术,以直观地描述生化耦合机械模型的性能。我们的方法基于生化性能曲线(类似于经典的泵曲线)和生物力学性能曲线(类似于系统曲线)。在构建这两条曲线后,它们的交点或不交点就描述了耦合模型的平衡状态。我们还可以通过图形观察到施加的扰动如何移动一条或两条曲线,从而观察到另一个组件将如何做出反应,而无需重新运行完整的模型。虽然生成性能曲线图形的前期成本随模型组件的效率而变化,但这种易于解释的可视化描述却非常有价值,否则模型行为就会变得不直观。在此,我们概述了如何构建和解释生化耦合生物力学模型的性能曲线,并将该技术应用于心血管空间的两个独立模型。性能曲线方法可以说明并帮助识别模型构建中的弱点,为用户应用扰动和拟合程序生成预期行为提供信息,并提高模型生成和应用过程的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信