Isoproterenol modulates expiratory activities in the brainstem spinal cord preparation in neonatal mice in vitro

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jean-Charles Viemari
{"title":"Isoproterenol modulates expiratory activities in the brainstem spinal cord preparation in neonatal mice in vitro","authors":"Jean-Charles Viemari","doi":"10.1016/j.resp.2024.104241","DOIUrl":null,"url":null,"abstract":"<div><p>Motor behaviors such as breathing required temporal coordination of different muscle groups to insured efficient ventilation and provide oxygen to the body. This action is the result of interactions between neural networks located within the brainstem. Inspiration and expiration depend at least in part on interactions between two separate oscillators: inspiration is driven by a neural network located in the preBötzinger complex (PreBötC) and active expiration is driven by a network in the parafacial respiratory group (pFRG). Neurons of the pFRG are silent at rest and become active when the respiratory drive increased. This study investigated the temporal coordination between the brainstem respiratory network and the lumbar spinal network that generates spontaneous activities that is different of the induced fictive locomotion. The remaining question is how these activities coordinate early during the development. Results of this study show that brainstem networks contribute to the temporal coordination of the lumbar spontaneous activity during inspiration since lumbar motor activity occurs exclusively during the expiratory time. This study also investigated the role of the β-noradrenergic modulation on the respiratory activities. β-noradrenergic receptors activation increased the frequency of the double bursts and increased expiratory activity at the lumbar level. These results suggest interactions between brainstem and spinal networks and reveal a descending drive that may contribute to the coordination of the respiratory and lumbar spontaneous activities.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482400034X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Motor behaviors such as breathing required temporal coordination of different muscle groups to insured efficient ventilation and provide oxygen to the body. This action is the result of interactions between neural networks located within the brainstem. Inspiration and expiration depend at least in part on interactions between two separate oscillators: inspiration is driven by a neural network located in the preBötzinger complex (PreBötC) and active expiration is driven by a network in the parafacial respiratory group (pFRG). Neurons of the pFRG are silent at rest and become active when the respiratory drive increased. This study investigated the temporal coordination between the brainstem respiratory network and the lumbar spinal network that generates spontaneous activities that is different of the induced fictive locomotion. The remaining question is how these activities coordinate early during the development. Results of this study show that brainstem networks contribute to the temporal coordination of the lumbar spontaneous activity during inspiration since lumbar motor activity occurs exclusively during the expiratory time. This study also investigated the role of the β-noradrenergic modulation on the respiratory activities. β-noradrenergic receptors activation increased the frequency of the double bursts and increased expiratory activity at the lumbar level. These results suggest interactions between brainstem and spinal networks and reveal a descending drive that may contribute to the coordination of the respiratory and lumbar spontaneous activities.

异丙肾上腺素调节新生小鼠体外脑干脊髓制备物的呼气活动。
呼吸等运动行为需要不同肌肉群在时间上的协调,以确保有效的通气,并向身体提供氧气。这一动作是位于脑干内的神经网络相互作用的结果。吸气和呼气至少部分取决于两个独立振荡器之间的相互作用:吸气由位于前博琴格复合体(PreBötC)的神经网络驱动,而主动呼气则由面旁呼吸群(pFRG)的神经网络驱动。pFRG 的神经元在静息时保持沉默,当呼吸驱动力增加时则变得活跃。这项研究调查了脑干呼吸网络与腰椎网络之间的时间协调,后者产生的自发活动不同于诱导的虚构运动。剩下的问题是,这些活动在发育早期是如何协调的。本研究结果表明,脑干网络有助于吸气时腰部自发活动的时间协调,因为腰部运动活动完全发生在呼气时间。本研究还探讨了β-去甲肾上腺素能对呼吸活动的调节作用。β-去甲肾上腺素能受体的激活增加了双爆发的频率,并增加了腰部的呼气活动。这些结果表明脑干和脊髓网络之间存在相互作用,并揭示了可能有助于协调呼吸和腰部自发活动的下降驱动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信