Timothy B. Niewold, Ivona Aksentijevich, Peter D. Gorevic, Greg Gibson, Qingping Yao
{"title":"Genetically transitional disease: conceptual understanding and applicability to rheumatic disease","authors":"Timothy B. Niewold, Ivona Aksentijevich, Peter D. Gorevic, Greg Gibson, Qingping Yao","doi":"10.1038/s41584-024-01086-9","DOIUrl":null,"url":null,"abstract":"In genomic medicine, the concept of genetically transitional disease (GTD) refers to cases in which gene mutation is necessary but not sufficient to cause disease. In this Perspective, we apply this novel concept to rheumatic diseases, which have been linked to hundreds of genetic variants via association studies. These variants are in the ‘grey zone’ between monogenic variants with large effect sizes and common susceptibility alleles with small effect sizes. Among genes associated with rare autoinflammatory diseases, many low-frequency and/or low-penetrance variants are known to increase susceptibility to systemic inflammation. In autoimmune diseases, hundreds of HLA and non-HLA genetic variants have been revealed to be modest- to moderate-risk alleles. These diseases can be reclassified as GTDs. The same concept could apply to many other human diseases. GTD could improve the reporting of genetic testing results, diagnostic yields, genetic counselling and selection of therapy, as well as facilitating research using a novel approach to human genetic diseases. Beyond the traditional classification of monogenic or complex, many genetic diseases can be considered genetically transitional disease. In this Perspective, the authors consider the application of the genetically transitional disease model to rheumatic diseases and the potential implications for patient care, genetic counselling and research.","PeriodicalId":18810,"journal":{"name":"Nature Reviews Rheumatology","volume":"20 5","pages":"301-310"},"PeriodicalIF":29.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Rheumatology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41584-024-01086-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In genomic medicine, the concept of genetically transitional disease (GTD) refers to cases in which gene mutation is necessary but not sufficient to cause disease. In this Perspective, we apply this novel concept to rheumatic diseases, which have been linked to hundreds of genetic variants via association studies. These variants are in the ‘grey zone’ between monogenic variants with large effect sizes and common susceptibility alleles with small effect sizes. Among genes associated with rare autoinflammatory diseases, many low-frequency and/or low-penetrance variants are known to increase susceptibility to systemic inflammation. In autoimmune diseases, hundreds of HLA and non-HLA genetic variants have been revealed to be modest- to moderate-risk alleles. These diseases can be reclassified as GTDs. The same concept could apply to many other human diseases. GTD could improve the reporting of genetic testing results, diagnostic yields, genetic counselling and selection of therapy, as well as facilitating research using a novel approach to human genetic diseases. Beyond the traditional classification of monogenic or complex, many genetic diseases can be considered genetically transitional disease. In this Perspective, the authors consider the application of the genetically transitional disease model to rheumatic diseases and the potential implications for patient care, genetic counselling and research.
期刊介绍:
Nature Reviews Rheumatology is part of the Nature Reviews portfolio of journals. The journal scope covers the entire spectrum of rheumatology research. We ensure that our articles are accessible to the widest possible audience.