{"title":"Comparison of wear and marginal fitness of 3D-printed deciduous molar crowns: An in vitro study.","authors":"Bin Lei, Huacui Xiong, Ke Chen","doi":"10.4012/dmj.2022-143","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the wear resistance of primary tooth enamel and 3 kinds of 3D printing materials and to compare the marginal fitness and internal suitability of prefabricated all-ceramic crowns, computer-aided design/manufacturing (CAD/CAM) all-ceramic crowns, and three 3D-printed deciduous molar crowns. Multifunctional friction wear testing machine was used to image the wear surface of the sample and calculate the maximum wear depth and volume loss value of each sample. The internal fit evaluation used the silicon replica method, The four points were measured using scanning electron microscopy (SEM). The obtained data were statistically analyzed using ANOVA and Tukey HSD-test with a fully randomized design (p<0.05). The results showed the wear resistance of E-Dent400 was better than that of PEEK and three different 3D printed materials have good wear resistance compared with the primary tooth enamel. The measured values at M1 and M4 of E-Dent400 were both the smallest.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2022-143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the wear resistance of primary tooth enamel and 3 kinds of 3D printing materials and to compare the marginal fitness and internal suitability of prefabricated all-ceramic crowns, computer-aided design/manufacturing (CAD/CAM) all-ceramic crowns, and three 3D-printed deciduous molar crowns. Multifunctional friction wear testing machine was used to image the wear surface of the sample and calculate the maximum wear depth and volume loss value of each sample. The internal fit evaluation used the silicon replica method, The four points were measured using scanning electron microscopy (SEM). The obtained data were statistically analyzed using ANOVA and Tukey HSD-test with a fully randomized design (p<0.05). The results showed the wear resistance of E-Dent400 was better than that of PEEK and three different 3D printed materials have good wear resistance compared with the primary tooth enamel. The measured values at M1 and M4 of E-Dent400 were both the smallest.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.