{"title":"Freeze-drying of bupivacaine lipospheres: preparation, characterization, and evaluation of anti-microbial properties.","authors":"Sepehr Labanian, Homa Faghihi, Hamed Montazeri, Aliakbar Jafarian","doi":"10.1007/s40199-024-00506-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To prepare freeze-dried bupivacaine lipospheres intended for topical application in burn injuries. The aim was improving the storage stability and developing a prolonged release pattern to tackle the adverse reactions resulting from the frequent administration of bupivacaine.</p><p><strong>Methods: </strong>The lipospheres were prepared by hot-melt dispersion method employing bupivacaine base at 1.5 and 3%w/w, tristearin 6% w/w as the core while dipalmitoyl phosphatidylcholine (DPPC) and soy phosphatidylcholine (SPC) as the coat at 0.75, 1.5 and 3% w/w. The lotion was then freeze-dried and cryoprotected by sucrose 3% w/w. Evaluation was carried out through loading and release analysis, storage study, particle characterization including morphology, zeta potential and particle size as well as anti-microbial assessment.</p><p><strong>Results: </strong>The highest loading, (87.6 ± 0.1%), was achieved using bupivacaine 3% and SPC 0.75%. After 6 months of storage at 4 ͦC, the loading in the lotion and the freeze-dried samples were 17.4 ± 0.2 and 87.2 ± 0.3%, respectively. In vitro dissolution test demonstrated 94.5% and 95% of bupivacaine release from lotion and freeze-dried samples, after 24 h. The respective zeta potential of -1.30 and 26 mV was recorded for lotion and solid-state bupivacaine. Micromeritic evaluation of freeze-dried powder exhibited particle size of 35.23 ± 2.02 μm and highly-wrinkled-irregular morphology without detectable needle structures related to drug free crystals. The powder had rapid reconstitution property and antibacterial activity.</p><p><strong>Conclusion: </strong>Freeze- drying holds a promising potential to improve the storage stability of bupivacaine lipospheres with well- preserved release pattern and particle properties for further topical application.</p>","PeriodicalId":10888,"journal":{"name":"DARU Journal of Pharmaceutical Sciences","volume":" ","pages":"207-214"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DARU Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40199-024-00506-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To prepare freeze-dried bupivacaine lipospheres intended for topical application in burn injuries. The aim was improving the storage stability and developing a prolonged release pattern to tackle the adverse reactions resulting from the frequent administration of bupivacaine.
Methods: The lipospheres were prepared by hot-melt dispersion method employing bupivacaine base at 1.5 and 3%w/w, tristearin 6% w/w as the core while dipalmitoyl phosphatidylcholine (DPPC) and soy phosphatidylcholine (SPC) as the coat at 0.75, 1.5 and 3% w/w. The lotion was then freeze-dried and cryoprotected by sucrose 3% w/w. Evaluation was carried out through loading and release analysis, storage study, particle characterization including morphology, zeta potential and particle size as well as anti-microbial assessment.
Results: The highest loading, (87.6 ± 0.1%), was achieved using bupivacaine 3% and SPC 0.75%. After 6 months of storage at 4 ͦC, the loading in the lotion and the freeze-dried samples were 17.4 ± 0.2 and 87.2 ± 0.3%, respectively. In vitro dissolution test demonstrated 94.5% and 95% of bupivacaine release from lotion and freeze-dried samples, after 24 h. The respective zeta potential of -1.30 and 26 mV was recorded for lotion and solid-state bupivacaine. Micromeritic evaluation of freeze-dried powder exhibited particle size of 35.23 ± 2.02 μm and highly-wrinkled-irregular morphology without detectable needle structures related to drug free crystals. The powder had rapid reconstitution property and antibacterial activity.
Conclusion: Freeze- drying holds a promising potential to improve the storage stability of bupivacaine lipospheres with well- preserved release pattern and particle properties for further topical application.
期刊介绍:
DARU Journal of Pharmaceutical Sciences is a peer-reviewed journal published on behalf of Tehran University of Medical Sciences. The journal encompasses all fields of the pharmaceutical sciences and presents timely research on all areas of drug conception, design, manufacture, classification and assessment.
The term DARU is derived from the Persian name meaning drug or medicine. This journal is a unique platform to improve the knowledge of researchers and scientists by publishing novel articles including basic and clinical investigations from members of the global scientific community in the forms of original articles, systematic or narrative reviews, meta-analyses, letters, and short communications.