Pinja Elomaa, Tuomas Ojalehto, Darshan Kumar, Ville Jokinen, Päivi Saavalainen
{"title":"Manually pressurized droplet digital PCR chip for rapid SARS-CoV-2 diagnostics.","authors":"Pinja Elomaa, Tuomas Ojalehto, Darshan Kumar, Ville Jokinen, Päivi Saavalainen","doi":"10.1063/5.0180394","DOIUrl":null,"url":null,"abstract":"<p><p>Droplet digital PCR (ddPCR) is a technique in which PCR reaction is divided into thousands of nanoliter-sized droplets and has proven to be a great tool in virus diagnostics. Compared to the gold standard system quantitative real-time PCR (RT-qPCR), ddPCR functions particularly well when dealing with samples with low template counts, such as viral concentration. This feature makes the technique suitable for early detection of the virus. In this study, a novel portable PDMS ddPCR chip is introduced. The chip functions without external pumps using manual pressurization with a multichannel pipet. The created droplets are monodispersed and form a monolayer on the chip's collection chamber, from where they can be effortlessly imaged. Droplets were analyzed and counted using artificial intelligence. The use of the manually pressurized chip was demonstrated for a SARS-CoV-2 assay, which takes advantage of isothermal strand invasion-based amplification (SIBA) technology, allowing quick and accurate, even point-of-care analysis of the sample. The results demonstrate that SIBA assays can be divided into nanoliter-sized droplets and used as quantitative assays, giving an approximation of the samples' viral count.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0180394","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Droplet digital PCR (ddPCR) is a technique in which PCR reaction is divided into thousands of nanoliter-sized droplets and has proven to be a great tool in virus diagnostics. Compared to the gold standard system quantitative real-time PCR (RT-qPCR), ddPCR functions particularly well when dealing with samples with low template counts, such as viral concentration. This feature makes the technique suitable for early detection of the virus. In this study, a novel portable PDMS ddPCR chip is introduced. The chip functions without external pumps using manual pressurization with a multichannel pipet. The created droplets are monodispersed and form a monolayer on the chip's collection chamber, from where they can be effortlessly imaged. Droplets were analyzed and counted using artificial intelligence. The use of the manually pressurized chip was demonstrated for a SARS-CoV-2 assay, which takes advantage of isothermal strand invasion-based amplification (SIBA) technology, allowing quick and accurate, even point-of-care analysis of the sample. The results demonstrate that SIBA assays can be divided into nanoliter-sized droplets and used as quantitative assays, giving an approximation of the samples' viral count.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...