Tianlong Wang, Mingru Zhang, Wenhao Dong, Jing Wang, Han Zhang, Yuefu Wang, Bingyang Ji
{"title":"Venoarterial Extracorporeal Membrane Oxygenation Implementation in Septic Shock Rat Model.","authors":"Tianlong Wang, Mingru Zhang, Wenhao Dong, Jing Wang, Han Zhang, Yuefu Wang, Bingyang Ji","doi":"10.1097/MAT.0000000000002168","DOIUrl":null,"url":null,"abstract":"<p><p>Septic shock, a global health concern, boasts high mortality rates. Research exploring the efficacy of venoarterial extracorporeal membrane oxygenation (VA-ECMO) in septic shock remains limited. Our study aimed to establish a rodent model employing VA-ECMO in septic shock rats, assessing the therapeutic impact of VA-ECMO on septic shock. Nineteen Sprague-Dawley rats were randomly assigned to sham, septic shock, and (septic shock + VA-ECMO; SSE) groups. Septic shock was induced by intravenous lipopolysaccharides, confirmed by a mean arterial pressure drop to 25-30% of baseline. Rats in the SSE group received 2 hours of VA-ECMO support and 60 minutes of post-weaning ventilation. Sham and septic shock groups underwent mechanical ventilation for equivalent durations. Invasive mean arterial pressure monitoring, echocardiographic examinations, and blood gas analysis revealed the efficacy of VA-ECMO in restoring circulation and ensuring adequate tissue oxygenation in septic shock rats. Post-experiment pathology exhibited the potential of VA-ECMO in mitigating major organ injury. In summary, our study successfully established a stable septic shock rat model with the implementation of VA-ECMO, offering a valuable platform to explore molecular mechanisms underlying VA-ECMO's impact on septic shock.</p>","PeriodicalId":8844,"journal":{"name":"ASAIO Journal","volume":" ","pages":"653-660"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAIO Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1097/MAT.0000000000002168","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Septic shock, a global health concern, boasts high mortality rates. Research exploring the efficacy of venoarterial extracorporeal membrane oxygenation (VA-ECMO) in septic shock remains limited. Our study aimed to establish a rodent model employing VA-ECMO in septic shock rats, assessing the therapeutic impact of VA-ECMO on septic shock. Nineteen Sprague-Dawley rats were randomly assigned to sham, septic shock, and (septic shock + VA-ECMO; SSE) groups. Septic shock was induced by intravenous lipopolysaccharides, confirmed by a mean arterial pressure drop to 25-30% of baseline. Rats in the SSE group received 2 hours of VA-ECMO support and 60 minutes of post-weaning ventilation. Sham and septic shock groups underwent mechanical ventilation for equivalent durations. Invasive mean arterial pressure monitoring, echocardiographic examinations, and blood gas analysis revealed the efficacy of VA-ECMO in restoring circulation and ensuring adequate tissue oxygenation in septic shock rats. Post-experiment pathology exhibited the potential of VA-ECMO in mitigating major organ injury. In summary, our study successfully established a stable septic shock rat model with the implementation of VA-ECMO, offering a valuable platform to explore molecular mechanisms underlying VA-ECMO's impact on septic shock.
期刊介绍:
ASAIO Journal is in the forefront of artificial organ research and development. On the cutting edge of innovative technology, it features peer-reviewed articles of the highest quality that describe research, development, the most recent advances in the design of artificial organ devices and findings from initial testing. Bimonthly, the ASAIO Journal features state-of-the-art investigations, laboratory and clinical trials, and discussions and opinions from experts around the world.
The official publication of the American Society for Artificial Internal Organs.