{"title":"A New Strategy for the Synthesis of Highly Active Catalysts Based on g-C3N4 for Photocatalytic Production of Hydrogen under Visible Light","authors":"K. O. Potapenko, S. V. Cherepanova, E. A. Kozlova","doi":"10.1134/S0012501623700112","DOIUrl":null,"url":null,"abstract":"<p>Materials based on graphite-like carbon nitride <i>g</i>‑C<sub>3</sub>N<sub>4</sub> were synthesized by heat treatment of a mixture of melamine and urea, and the effect of synthesis conditions on the photocatalytic activity of the samples was studied at various melamine : urea ratios. Platinum (1 wt %) was deposited on the surface of the synthesized <i>g</i>‑C<sub>3</sub>N<sub>4</sub> samples as a cocatalyst. The produced photocatalysts were characterized by X-ray powder diffraction analysis, diffuse reflectance UV-Vis spectroscopy, and low-temperature nitrogen adsorption. Photocatalytic activity was determined in the reaction of hydrogen evolution from an aqueous solution of triethanolamine (10 vol %) upon irradiation with visible light (λ = 425 nm). Optimal conditions for the synthesis of the photocatalyst 1% Pt/<i>g</i>-C<sub>3</sub>N<sub>4</sub> were found, which was obtained by calcination of a mixture of melamine and urea (1 : 3) and ensured an H<sub>2</sub> evolution rate of 5.0 mmol g<sup>–1</sup> h<sup>–1</sup> at an apparent quantum efficiency of 2.5%. The developed synthetic approach produces highly active catalysts because, during the synthesis, an intermediate supramolecular complex melamine–cyanuric acid is formed, which, upon further heating, is converted into <i>g</i>-C<sub>3</sub>N<sub>4</sub> characterized by a high specific surface area exceeding 100 m<sup>2</sup> g<sup>–1</sup>.</p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":"513 1","pages":"167 - 175"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0012501623700112","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Materials based on graphite-like carbon nitride g‑C3N4 were synthesized by heat treatment of a mixture of melamine and urea, and the effect of synthesis conditions on the photocatalytic activity of the samples was studied at various melamine : urea ratios. Platinum (1 wt %) was deposited on the surface of the synthesized g‑C3N4 samples as a cocatalyst. The produced photocatalysts were characterized by X-ray powder diffraction analysis, diffuse reflectance UV-Vis spectroscopy, and low-temperature nitrogen adsorption. Photocatalytic activity was determined in the reaction of hydrogen evolution from an aqueous solution of triethanolamine (10 vol %) upon irradiation with visible light (λ = 425 nm). Optimal conditions for the synthesis of the photocatalyst 1% Pt/g-C3N4 were found, which was obtained by calcination of a mixture of melamine and urea (1 : 3) and ensured an H2 evolution rate of 5.0 mmol g–1 h–1 at an apparent quantum efficiency of 2.5%. The developed synthetic approach produces highly active catalysts because, during the synthesis, an intermediate supramolecular complex melamine–cyanuric acid is formed, which, upon further heating, is converted into g-C3N4 characterized by a high specific surface area exceeding 100 m2 g–1.
期刊介绍:
Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.