Weiliang Qi, Yaping Fu, Enbo Liu, Zhixing Cheng, Yuxiu Sun, Siqi Liu and Minghui Yang
{"title":"Advancements and opportunities in piezo-(photo)catalytic synthesis of value-added chemicals","authors":"Weiliang Qi, Yaping Fu, Enbo Liu, Zhixing Cheng, Yuxiu Sun, Siqi Liu and Minghui Yang","doi":"10.1039/D3EY00313B","DOIUrl":null,"url":null,"abstract":"<p >Piezo-(photo)catalytic technologies offer a promising solution for accelerating energy diversification and addressing environmental pollution by converting mechanical and light energy into chemical energy. The application of piezo-(photo)catalytic technology not only meets the demands of a growing market but also contributes to environmental preservation. In this review, we summarize recent advancements in synthesizing value-added chemicals through piezo-(photo)catalytic technology, highlighting the principles of piezotronics and piezo-phototronics. We examine the fundamental processes involved in energy conversion and discuss the advantages of synthesized value-added chemicals using piezocatalytic technology. We explore different chemistries and reaction pathways, and categorize piezoelectric semiconductors based on performance in piezo-photocatalysis. Finally, we identify prospects, challenges, and potential solutions for future research and development in value-added chemical synthesis using piezo-(photo)catalytic technology.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00313b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00313b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Piezo-(photo)catalytic technologies offer a promising solution for accelerating energy diversification and addressing environmental pollution by converting mechanical and light energy into chemical energy. The application of piezo-(photo)catalytic technology not only meets the demands of a growing market but also contributes to environmental preservation. In this review, we summarize recent advancements in synthesizing value-added chemicals through piezo-(photo)catalytic technology, highlighting the principles of piezotronics and piezo-phototronics. We examine the fundamental processes involved in energy conversion and discuss the advantages of synthesized value-added chemicals using piezocatalytic technology. We explore different chemistries and reaction pathways, and categorize piezoelectric semiconductors based on performance in piezo-photocatalysis. Finally, we identify prospects, challenges, and potential solutions for future research and development in value-added chemical synthesis using piezo-(photo)catalytic technology.