Realizing SnF2-TMAB passivated lead-free formamidinum perovskite solar cells with doctor-bladed carbon electrode

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Debesh Devadutta Mishra, Pranati Kumari Rath, Natarajan Thirugnanam, Tao Shen, Zihe Chen, Zexian Zhang, Xinghang Liu, Jinhua Li, Xianbao Wang, Cher Ming Tan
{"title":"Realizing SnF2-TMAB passivated lead-free formamidinum perovskite solar cells with doctor-bladed carbon electrode","authors":"Debesh Devadutta Mishra,&nbsp;Pranati Kumari Rath,&nbsp;Natarajan Thirugnanam,&nbsp;Tao Shen,&nbsp;Zihe Chen,&nbsp;Zexian Zhang,&nbsp;Xinghang Liu,&nbsp;Jinhua Li,&nbsp;Xianbao Wang,&nbsp;Cher Ming Tan","doi":"10.1002/pip.3794","DOIUrl":null,"url":null,"abstract":"<p>The suitable band gap with outstanding optoelectronic characteristics makes Sn-based perovskites one of the promising candidates for the preparation of efficient lead-free perovskite solar cells (PSCs). However, preparing Sn<sup>2+</sup>-based PSCs is very difficult due to the ready oxidation of Sn<sup>2+</sup> to Sn<sup>4+</sup> when exposed to air. In this work, by incorporating the trimethylamine borane complex (TMAB) as an antioxidant additive into the perovskite precursor solution along with excess SnF<sub>2</sub>, we report the fabrication of air-stable FASnI<sub>3</sub>-based solar cells. The complex formed by TMAB-SNF<sub>2</sub> (additive layer) enables in-situ encapsulation of perovskite grains. This layer considerably improves the oxidation stability of the perovskite layer by eliminating oxygen vacancies from the NiO hole transport. The resulting PSCs can maintain more than 70% of the efficiency over 45 and 75 hours respectively in air and N<sub>2</sub> exposure without encapsulation. This can be regarded as a genuinely enhanced attribute, particularly considering the use of carbon in one of the electrodes in FASnI<sub>3</sub> perovskites. The findings suggest an alternative approach to provide effective and sustainable Sn-based PSCs in the future.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"569-578"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3794","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The suitable band gap with outstanding optoelectronic characteristics makes Sn-based perovskites one of the promising candidates for the preparation of efficient lead-free perovskite solar cells (PSCs). However, preparing Sn2+-based PSCs is very difficult due to the ready oxidation of Sn2+ to Sn4+ when exposed to air. In this work, by incorporating the trimethylamine borane complex (TMAB) as an antioxidant additive into the perovskite precursor solution along with excess SnF2, we report the fabrication of air-stable FASnI3-based solar cells. The complex formed by TMAB-SNF2 (additive layer) enables in-situ encapsulation of perovskite grains. This layer considerably improves the oxidation stability of the perovskite layer by eliminating oxygen vacancies from the NiO hole transport. The resulting PSCs can maintain more than 70% of the efficiency over 45 and 75 hours respectively in air and N2 exposure without encapsulation. This can be regarded as a genuinely enhanced attribute, particularly considering the use of carbon in one of the electrodes in FASnI3 perovskites. The findings suggest an alternative approach to provide effective and sustainable Sn-based PSCs in the future.

Abstract Image

Abstract Image

利用刮刀状碳电极实现 SnF2-TMAB 钝化无铅甲脒包晶太阳能电池
合适的带隙和出色的光电特性使锡基包晶石成为制备高效无铅包晶石太阳能电池(PSCs)的理想候选材料之一。然而,由于暴露在空气中时 Sn2+ 很容易氧化成 Sn4+,因此制备 Sn2+ 基 PSCs 非常困难。在这项工作中,我们将三甲胺硼烷复合物(TMAB)作为抗氧化添加剂与过量的 SnF2 一起加入到过氧化物前驱体溶液中,从而制备出了空气稳定的基于 FASnI3 的太阳能电池。TMAB-SNF2(添加剂层)形成的复合物能够原位封装过氧化物晶粒。该层通过消除氧化镍空穴传输中的氧空位,大大提高了透辉石层的氧化稳定性。在没有封装的情况下,所产生的 PSC 在暴露于空气和 N2 的情况下分别能在 45 小时和 75 小时内保持 70% 以上的效率。这可以说是一种真正的增强特性,特别是考虑到 FASnI3 包晶石的电极之一使用了碳。这些发现为今后提供有效和可持续的锡基 PSC 提出了另一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信