Nicholas F. Brown , Elizabeth R. Murray , Lauren C. Cutmore , Philip Howard , Luke Masterson , Francesca Zammarchi , John A. Hartley , Patrick H. van Berkel , John F. Marshall
{"title":"Integrin-αvβ6 targeted peptide-toxin therapy in a novel αvβ6-expressing immunocompetent model of pancreatic cancer","authors":"Nicholas F. Brown , Elizabeth R. Murray , Lauren C. Cutmore , Philip Howard , Luke Masterson , Francesca Zammarchi , John A. Hartley , Patrick H. van Berkel , John F. Marshall","doi":"10.1016/j.pan.2024.02.013","DOIUrl":null,"url":null,"abstract":"<div><p>Previously we reported that a novel αvβ6-specific peptide-drug conjugate (SG3299) could eliminate established human pancreatic ductal adenocarcinoma (PDAC) xenografts. However the development of effective therapies for PDAC, which is an essential need, must show efficacy in relevant immunocompetent animals. Previously we reported that the KPC mouse transgenic PDAC model that closely recapitulates most stages of development of human PDAC, unlike in humans, failed to express αvβ6 on their tumours or metastases. In this study we have taken the KPC-derived PDAC line TB32043 and engineered a variant line (TB32043mb6S2) that expresses mouse integrin αvβ6. We report that orthotopic implantation of the αvβ6 over-expressing TB32043mb6S2 cells promotes shorter overall survival and increase in metastases. Moreover, systemic treatment of mice with established TB32043mb6S2 tumours in the pancreas with SG2399 lived significantly longer (p < 0.001; mean OS 48d) compared with PBS or control SG3511 (mean OS 25.5d and 26d, respectively). Thus SG3299 is confirmed as a promising candidate therapeutic for the therapy of PDAC.</p></div>","PeriodicalId":19976,"journal":{"name":"Pancreatology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1424390324000577/pdfft?md5=53bcd7ca88ad994ed153d3380e893626&pid=1-s2.0-S1424390324000577-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pancreatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1424390324000577","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previously we reported that a novel αvβ6-specific peptide-drug conjugate (SG3299) could eliminate established human pancreatic ductal adenocarcinoma (PDAC) xenografts. However the development of effective therapies for PDAC, which is an essential need, must show efficacy in relevant immunocompetent animals. Previously we reported that the KPC mouse transgenic PDAC model that closely recapitulates most stages of development of human PDAC, unlike in humans, failed to express αvβ6 on their tumours or metastases. In this study we have taken the KPC-derived PDAC line TB32043 and engineered a variant line (TB32043mb6S2) that expresses mouse integrin αvβ6. We report that orthotopic implantation of the αvβ6 over-expressing TB32043mb6S2 cells promotes shorter overall survival and increase in metastases. Moreover, systemic treatment of mice with established TB32043mb6S2 tumours in the pancreas with SG2399 lived significantly longer (p < 0.001; mean OS 48d) compared with PBS or control SG3511 (mean OS 25.5d and 26d, respectively). Thus SG3299 is confirmed as a promising candidate therapeutic for the therapy of PDAC.
期刊介绍:
Pancreatology is the official journal of the International Association of Pancreatology (IAP), the European Pancreatic Club (EPC) and several national societies and study groups around the world. Dedicated to the understanding and treatment of exocrine as well as endocrine pancreatic disease, this multidisciplinary periodical publishes original basic, translational and clinical pancreatic research from a range of fields including gastroenterology, oncology, surgery, pharmacology, cellular and molecular biology as well as endocrinology, immunology and epidemiology. Readers can expect to gain new insights into pancreatic physiology and into the pathogenesis, diagnosis, therapeutic approaches and prognosis of pancreatic diseases. The journal features original articles, case reports, consensus guidelines and topical, cutting edge reviews, thus representing a source of valuable, novel information for clinical and basic researchers alike.