Abdominal multi-organ segmentation using multi-scale and context-aware neural networks

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Yuhan Song, Armagan Elibol , Nak Young Chong
{"title":"Abdominal multi-organ segmentation using multi-scale and context-aware neural networks","authors":"Yuhan Song,&nbsp;Armagan Elibol ,&nbsp;Nak Young Chong","doi":"10.1016/j.ifacsc.2024.100249","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in AI have significantly enhanced smart diagnostic methods, bringing us closer to achieving end-to-end diagnosis. Ultrasound image segmentation plays a crucial role in this diagnostic process. An accurate and robust segmentation model accelerates the process and reduces the burden of sonographers. In contrast to previous research, we consider two inherent features of ultrasound images: (1) different organs and tissues vary in spatial sizes, and (2) the anatomical structures inside the human body form a relatively constant spatial relationship. Based on those two ideas, we proposed two segmentation models combining multi-scale convolution neural network backbones and a spatial context feature extractor. We discuss two backbone structures to extract anatomical structures of different scales: the Feature Pyramid Network (FPN) backbone and the Trident Network backbone. Moreover, we show how Spatial Recurrent Neural Network (SRNN) is implemented to extract the spatial context features in abdominal ultrasound images. Our proposed model has achieved dice coefficient score of 0.919 and 0.931, respectively.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"27 ","pages":"Article 100249"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in AI have significantly enhanced smart diagnostic methods, bringing us closer to achieving end-to-end diagnosis. Ultrasound image segmentation plays a crucial role in this diagnostic process. An accurate and robust segmentation model accelerates the process and reduces the burden of sonographers. In contrast to previous research, we consider two inherent features of ultrasound images: (1) different organs and tissues vary in spatial sizes, and (2) the anatomical structures inside the human body form a relatively constant spatial relationship. Based on those two ideas, we proposed two segmentation models combining multi-scale convolution neural network backbones and a spatial context feature extractor. We discuss two backbone structures to extract anatomical structures of different scales: the Feature Pyramid Network (FPN) backbone and the Trident Network backbone. Moreover, we show how Spatial Recurrent Neural Network (SRNN) is implemented to extract the spatial context features in abdominal ultrasound images. Our proposed model has achieved dice coefficient score of 0.919 and 0.931, respectively.

利用多尺度和情境感知神经网络进行腹部多器官分割
人工智能的最新进展大大增强了智能诊断方法,使我们更接近实现端到端诊断。超声图像分割在这一诊断过程中起着至关重要的作用。一个准确而稳健的分割模型可以加快这一过程,并减轻超声技师的负担。与以往的研究不同,我们考虑了超声图像的两个固有特征:(1) 不同器官和组织的空间大小各不相同;(2) 人体内部的解剖结构形成了相对固定的空间关系。基于这两种观点,我们提出了两种结合多尺度卷积神经网络骨干和空间上下文特征提取器的分割模型。我们讨论了提取不同尺度解剖结构的两种骨干结构:特征金字塔网络(FPN)骨干和三叉戟网络骨干。此外,我们还展示了如何利用空间循环神经网络(SRNN)来提取腹部超声图像中的空间上下文特征。我们提出的模型的骰子系数分别达到了 0.919 和 0.931。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信