Developmental regulation of primitive erythropoiesis.

IF 3.1 3区 医学 Q2 HEMATOLOGY
Current Opinion in Hematology Pub Date : 2024-05-01 Epub Date: 2024-02-27 DOI:10.1097/MOH.0000000000000806
Marlies P Rossmann, James Palis
{"title":"Developmental regulation of primitive erythropoiesis.","authors":"Marlies P Rossmann, James Palis","doi":"10.1097/MOH.0000000000000806","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation.</p><p><strong>Recent findings: </strong>Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo. Mechanistically, the repertoire of transcription factors that critically regulate primitive erythropoiesis has been expanded to include regulators of transcription elongation, as well as epigenetic modifiers such as the histone methyltransferase DOT1L. For the latter, noncanonical roles aside from enzymatic activity are being uncovered. Lastly, detailed surveys of the metabolic and proteomic landscape of primitive erythroid precursors reveal the activation of key metabolic pathways such as pentose phosphate pathway that are paralleled by a striking loss of mRNA translation machinery.</p><p><strong>Summary: </strong>The ability to interrogate single cells in vivo continues to yield new insights into the birth of the first essential organ system of the developing embryo. A comparison of the regulation of primitive and definitive erythropoiesis, as well as the interplay of the different layers of regulation - transcriptional, epigenetic, and metabolic - will be critical in achieving the goal of faithfully generating erythroid cells in vitro for therapeutic purposes.</p>","PeriodicalId":55196,"journal":{"name":"Current Opinion in Hematology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOH.0000000000000806","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: In this review, we present an overview of recent studies of primitive erythropoiesis, focusing on advances in deciphering its embryonic origin, defining species-specific differences in its developmental regulation, and better understanding the molecular and metabolic pathways involved in terminal differentiation.

Recent findings: Single-cell transcriptomics combined with state-of-the-art lineage tracing approaches in unperturbed murine embryos have yielded new insights concerning the origin of the first (primitive) erythroid cells that arise from mesoderm-derived progenitors. Moreover, studies examining primitive erythropoiesis in rare early human embryo samples reveal an overall conservation of primitive erythroid ontogeny in mammals, albeit with some interesting differences such as localization of erythropoietin (EPO) production in the early embryo. Mechanistically, the repertoire of transcription factors that critically regulate primitive erythropoiesis has been expanded to include regulators of transcription elongation, as well as epigenetic modifiers such as the histone methyltransferase DOT1L. For the latter, noncanonical roles aside from enzymatic activity are being uncovered. Lastly, detailed surveys of the metabolic and proteomic landscape of primitive erythroid precursors reveal the activation of key metabolic pathways such as pentose phosphate pathway that are paralleled by a striking loss of mRNA translation machinery.

Summary: The ability to interrogate single cells in vivo continues to yield new insights into the birth of the first essential organ system of the developing embryo. A comparison of the regulation of primitive and definitive erythropoiesis, as well as the interplay of the different layers of regulation - transcriptional, epigenetic, and metabolic - will be critical in achieving the goal of faithfully generating erythroid cells in vitro for therapeutic purposes.

原始红细胞生成的发育调节。
综述的目的:在这篇综述中,我们概述了最近对原始红细胞生成的研究,重点是在破译其胚胎起源、确定其发育调控的物种特异性差异以及更好地理解参与终端分化的分子和代谢途径方面取得的进展:单细胞转录组学结合最先进的小鼠胚胎世系追踪方法,对源自中胚层祖细胞的第一批(原始)红细胞的起源有了新的认识。此外,在罕见的人类早期胚胎样本中对原始红细胞生成进行的研究显示,哺乳动物的原始红细胞发生过程总体上是一致的,尽管存在一些有趣的差异,例如红细胞生成素(EPO)在早期胚胎中的生成位置。从机理上讲,对原始红细胞生成起关键调控作用的转录因子的范围已经扩大,包括转录延伸的调控因子以及组蛋白甲基转移酶 DOT1L 等表观遗传修饰因子。对于后者,除了酶活性外,非规范作用也正在被发现。最后,对原始红细胞前体的代谢和蛋白质组情况的详细调查显示,磷酸戊糖途径等关键代谢途径的激活与 mRNA 翻译机制的显著丧失并行不悖。比较原始红细胞生成和最终红细胞生成的调控,以及不同调控层次(转录、表观遗传和代谢)之间的相互作用,对于实现在体外真实生成红细胞用于治疗的目标至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.10%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ​​​​​​​​Current Opinion in Hematology is an easy-to-digest bimonthly journal covering the most interesting and important advances in the field of hematology. Its hand-picked selection of editors ensure the highest quality selection of unbiased review articles on themes from nine key subject areas, including myeloid biology, Vascular biology, hematopoiesis and erythroid system and its diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信