Nuri Karabay, Huseyin Odaman, Alper Vahaplar, Ceren Kizmazoglu, Orhan Kalemci
{"title":"MRI-based Texture Analysis in Differentiation of Benign and Malignant Vertebral Compression Fractures.","authors":"Nuri Karabay, Huseyin Odaman, Alper Vahaplar, Ceren Kizmazoglu, Orhan Kalemci","doi":"10.2174/0115734056290762240209071656","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The diagnosis and characterization of vertebral compression fractures are very important for clinical management. In this evaluation, which is usually performed with diagnostic (conventional) imaging, the findings are not always typical or diagnostic. Therefore, it is important to have new information to support imaging findings. Texture analysis is a method that can evaluate information contained in diagnostic images and is not visually noticeable. This study aimed to evaluate the magnetic resonance images of cases diagnosed with vertebral compression fractures by the texture analysis method, compare them with histopathological data, and investigate the effectiveness of this method in the differentiation of benign and malignant vertebral compression fractures.</p><p><strong>Methods: </strong>Fifty-five patients with a total of 56 vertebral compression fractures were included in the study. Magnetic resonance images were examined and segmented using Local Image Feature Extraction (LIFEx) software, which is an open-source program for texture analysis. The results were compared with the histopathological diagnosis.</p><p><strong>Results: </strong>The application of the Decision Tree algorithm to the dataset yielded impressively accurate predictions (≈95% in accuracy, precision, and recall).</p><p><strong>Conclusion: </strong>Interpreting tissue analysis parameters together with conventional magnetic resonance imaging findings can improve the abilities of radiologists, lead to accurate diagnoses, and prevent unnecessary invasive procedures. Further prospective trials in larger populations are needed to verify the role and performance of texture analysis in patients with vertebral compression fractures.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056290762240209071656","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The diagnosis and characterization of vertebral compression fractures are very important for clinical management. In this evaluation, which is usually performed with diagnostic (conventional) imaging, the findings are not always typical or diagnostic. Therefore, it is important to have new information to support imaging findings. Texture analysis is a method that can evaluate information contained in diagnostic images and is not visually noticeable. This study aimed to evaluate the magnetic resonance images of cases diagnosed with vertebral compression fractures by the texture analysis method, compare them with histopathological data, and investigate the effectiveness of this method in the differentiation of benign and malignant vertebral compression fractures.
Methods: Fifty-five patients with a total of 56 vertebral compression fractures were included in the study. Magnetic resonance images were examined and segmented using Local Image Feature Extraction (LIFEx) software, which is an open-source program for texture analysis. The results were compared with the histopathological diagnosis.
Results: The application of the Decision Tree algorithm to the dataset yielded impressively accurate predictions (≈95% in accuracy, precision, and recall).
Conclusion: Interpreting tissue analysis parameters together with conventional magnetic resonance imaging findings can improve the abilities of radiologists, lead to accurate diagnoses, and prevent unnecessary invasive procedures. Further prospective trials in larger populations are needed to verify the role and performance of texture analysis in patients with vertebral compression fractures.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.