Multi-armed bandits, Thomson sampling and unsupervised machine learning in phylogenetic graph search

IF 3.9 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Cladistics Pub Date : 2024-02-28 DOI:10.1111/cla.12572
Ward C. Wheeler
{"title":"Multi-armed bandits, Thomson sampling and unsupervised machine learning in phylogenetic graph search","authors":"Ward C. Wheeler","doi":"10.1111/cla.12572","DOIUrl":null,"url":null,"abstract":"<p>A phylogenetic graph search relies on a large number of highly parameterized search procedures (e.g. branch-swapping, perturbation, simulated annealing, genetic algorithm). These procedures vary in effectiveness over datasets and at alternative points in analytical pipelines. The multi-armed bandit problem is applied to phylogenetic graph searching to more effectively utilize these procedures. Thompson sampling is applied to a collection of search and optimization “bandits” to favour productive search strategies over those that are less successful. This adaptive random sampling strategy is shown to be more effective in producing heuristically optimal phylogenetic graphs and more time efficient than existing uniform probability randomized search strategies. The strategy acts as a form of unsupervised machine learning that can be applied to a diversity of phylogenetic datasets without prior knowledge of their properties.</p>","PeriodicalId":50688,"journal":{"name":"Cladistics","volume":"40 4","pages":"430-437"},"PeriodicalIF":3.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cladistics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cla.12572","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A phylogenetic graph search relies on a large number of highly parameterized search procedures (e.g. branch-swapping, perturbation, simulated annealing, genetic algorithm). These procedures vary in effectiveness over datasets and at alternative points in analytical pipelines. The multi-armed bandit problem is applied to phylogenetic graph searching to more effectively utilize these procedures. Thompson sampling is applied to a collection of search and optimization “bandits” to favour productive search strategies over those that are less successful. This adaptive random sampling strategy is shown to be more effective in producing heuristically optimal phylogenetic graphs and more time efficient than existing uniform probability randomized search strategies. The strategy acts as a form of unsupervised machine learning that can be applied to a diversity of phylogenetic datasets without prior knowledge of their properties.

系统发育图搜索中的多臂匪徒、汤姆森抽样和无监督机器学习。
系统发生图搜索依赖于大量高度参数化的搜索程序(如分支交换、扰动、模拟退火、遗传算法)。这些程序在不同的数据集和分析管道的不同点上效果各异。多臂强盗问题被应用于系统发生图搜索,以更有效地利用这些程序。汤普森抽样被应用于一系列搜索和优化 "强盗",以偏向于富有成效的搜索策略,而不是成功率较低的策略。这种自适应随机抽样策略在生成启发式最优系统图方面更为有效,而且比现有的均匀概率随机搜索策略更省时。该策略是一种无监督机器学习,可应用于多种系统发育数据集,而无需事先了解其属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cladistics
Cladistics 生物-进化生物学
CiteScore
8.60
自引率
5.60%
发文量
34
期刊介绍: Cladistics publishes high quality research papers on systematics, encouraging debate on all aspects of the field, from philosophy, theory and methodology to empirical studies and applications in biogeography, coevolution, conservation biology, ontogeny, genomics and paleontology. Cladistics is read by scientists working in the research fields of evolution, systematics and integrative biology and enjoys a consistently high position in the ISI® rankings for evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信