Kimia Rahimiyan, Mohammad Hossein Nasr Esfahani, Fereshteh Karamali
{"title":"The proliferative effects of stem cells from apical papilla-conditioned medium on rat corneal endothelial cells.","authors":"Kimia Rahimiyan, Mohammad Hossein Nasr Esfahani, Fereshteh Karamali","doi":"10.1111/wrr.13161","DOIUrl":null,"url":null,"abstract":"<p><p>The cornea, positioned at the forefront of the eye, refracts the light for focusing images on the retina. Damage to this transparent structure can lead to various visual disorders. The corneal endothelial cells (CECs) are crucial for transparency and homeostasis, but lack the ability to reproduce. Significant damage results in structure destruction and vision impairment. While extensive research has aimed at the restoring the corneal endothelial layer, including endothelial proliferation for functional monolayers remains challenging. Our previous studies confirmed the proliferative activity of stem cells from apical papilla-conditioned medium (SCAP-CM) on the retinal pigmented epithelium as a single cell layer. This study investigates how SCAP-CM influences the proliferation and migration of CECs. Our results introduced Matrigel, as a new matrix component for in vitro culture of CECs. Moreover, 60% of SCAP-CM was able to stimulate CEC proliferation as well as migrate to repair wound healing during 24 h. Confluent CECs also expressed specific markers, ATP1a1, ZO-1 and CD56, indicative of CEC characteristics, aligning with the recapitulation of differentiation when forming a homogenous monolayer at the same level of isolated CECs without in vitro culture. These findings suggested that SCAP-CM administration could be useful for future preclinical and clinical applications.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"292-300"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.13161","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cornea, positioned at the forefront of the eye, refracts the light for focusing images on the retina. Damage to this transparent structure can lead to various visual disorders. The corneal endothelial cells (CECs) are crucial for transparency and homeostasis, but lack the ability to reproduce. Significant damage results in structure destruction and vision impairment. While extensive research has aimed at the restoring the corneal endothelial layer, including endothelial proliferation for functional monolayers remains challenging. Our previous studies confirmed the proliferative activity of stem cells from apical papilla-conditioned medium (SCAP-CM) on the retinal pigmented epithelium as a single cell layer. This study investigates how SCAP-CM influences the proliferation and migration of CECs. Our results introduced Matrigel, as a new matrix component for in vitro culture of CECs. Moreover, 60% of SCAP-CM was able to stimulate CEC proliferation as well as migrate to repair wound healing during 24 h. Confluent CECs also expressed specific markers, ATP1a1, ZO-1 and CD56, indicative of CEC characteristics, aligning with the recapitulation of differentiation when forming a homogenous monolayer at the same level of isolated CECs without in vitro culture. These findings suggested that SCAP-CM administration could be useful for future preclinical and clinical applications.
期刊介绍:
Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others.
Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.