Genetic variation in the triosephosphate isomerase gene of the fall armyworm and its distribution across China.

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY
Insect Science Pub Date : 2024-12-01 Epub Date: 2024-02-27 DOI:10.1111/1744-7917.13348
Xin-Yue Liang, Lei Zhang, Hong-Ran Li, Xiao-Ping Niu, Yu-Tao Xiao
{"title":"Genetic variation in the triosephosphate isomerase gene of the fall armyworm and its distribution across China.","authors":"Xin-Yue Liang, Lei Zhang, Hong-Ran Li, Xiao-Ping Niu, Yu-Tao Xiao","doi":"10.1111/1744-7917.13348","DOIUrl":null,"url":null,"abstract":"<p><p>The fall armyworm (FAW), Spodoptera frugiperda, has colonized and caused consistent damage in the Eastern hemisphere. The identification of various FAW strains is essential for developing precise prevention and control measures. The triosephosphate isomerase (Tpi) gene is recognized as an effective marker closely linked to FAW subpopulations. However, most current studies primarily focus on the comparison of variations in specific gene sites of this gene. In this study, we conducted full-length sequencing of the Tpi genes from 5 representative FAW groups. Our findings revealed that the Tpi genes varied in length from 1220 to 1420 bp, with the primary variation occurring within 4 introns. Notably, the exon lengths remained consistent, at 747 bp, with 37 observed base variations; however, no amino acid variations were detected. Through sequence alignment, we identified 8 stable variation sites that can be used to distinguish FAW strains in the Eastern hemisphere. Additionally, we performed strain identification on 1569 FAW samples collected from 19 provinces in China between 2020 and 2021. The extensive analysis indicated the absence of the rice strain in the samples. Instead, we only detected the presence of the corn strain and the Zambia strain, with the Zambia strain being distributed in a very low proportion (3.44%). Furthermore, the corn strain could be further categorized into 2 subgroups. This comprehensive study provides a valuable reference for enhancing our understanding of FAW population differentiation and for improving monitoring and early warning efforts.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":"1984-1997"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13348","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fall armyworm (FAW), Spodoptera frugiperda, has colonized and caused consistent damage in the Eastern hemisphere. The identification of various FAW strains is essential for developing precise prevention and control measures. The triosephosphate isomerase (Tpi) gene is recognized as an effective marker closely linked to FAW subpopulations. However, most current studies primarily focus on the comparison of variations in specific gene sites of this gene. In this study, we conducted full-length sequencing of the Tpi genes from 5 representative FAW groups. Our findings revealed that the Tpi genes varied in length from 1220 to 1420 bp, with the primary variation occurring within 4 introns. Notably, the exon lengths remained consistent, at 747 bp, with 37 observed base variations; however, no amino acid variations were detected. Through sequence alignment, we identified 8 stable variation sites that can be used to distinguish FAW strains in the Eastern hemisphere. Additionally, we performed strain identification on 1569 FAW samples collected from 19 provinces in China between 2020 and 2021. The extensive analysis indicated the absence of the rice strain in the samples. Instead, we only detected the presence of the corn strain and the Zambia strain, with the Zambia strain being distributed in a very low proportion (3.44%). Furthermore, the corn strain could be further categorized into 2 subgroups. This comprehensive study provides a valuable reference for enhancing our understanding of FAW population differentiation and for improving monitoring and early warning efforts.

Abstract Image

秋梢虫三糖磷酸异构酶基因的遗传变异及其在中国的分布。
秋虫(FAW)--Spodoptera frugiperda--已在东半球定居并造成了持续的破坏。要制定精确的预防和控制措施,就必须对各种秋翅虫菌株进行鉴定。三糖磷酸异构酶(Tpi)基因被认为是与 FAW 亚群密切相关的有效标记。然而,目前大多数研究主要侧重于比较该基因特定基因位点的变异。在本研究中,我们对 5 个具有代表性的 FAW 群体的 Tpi 基因进行了全长测序。我们的研究结果表明,Tpi 基因的长度从 1220 到 1420 bp 不等,主要变异发生在 4 个内含子中。值得注意的是,外显子长度保持一致,为 747 bp,观察到 37 个碱基变异;但是,没有检测到氨基酸变异。通过序列比对,我们确定了 8 个稳定的变异位点,可用于区分东半球的 FAW 株系。此外,我们还对 2020 年至 2021 年期间从中国 19 个省份采集的 1569 份一窝蜂样本进行了菌株鉴定。广泛的分析表明,样本中不存在水稻菌株。相反,我们只检测到玉米菌株和赞比亚菌株,其中赞比亚菌株的分布比例非常低(3.44%)。此外,玉米菌株还可进一步分为两个亚群。这项全面的研究为我们加深对草翅虫种群分化的了解、改进监测和预警工作提供了宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信