Derivation of transcriptomics-based points of departure for 20 per- or polyfluoroalkyl substances using a larval fathead minnow (Pimephales promelas) reduced transcriptome assay.

IF 2.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Daniel L Villeneuve, Kendra Bush, Monique Hazemi, John X Hoang, Michelle Le, Brett R Blackwell, Emma Stacy, Kevin M Flynn
{"title":"Derivation of transcriptomics-based points of departure for 20 per- or polyfluoroalkyl substances using a larval fathead minnow (Pimephales promelas) reduced transcriptome assay.","authors":"Daniel L Villeneuve, Kendra Bush, Monique Hazemi, John X Hoang, Michelle Le, Brett R Blackwell, Emma Stacy, Kevin M Flynn","doi":"10.1002/etc.5825","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that ecological hazards of most PFAS remain uncharacterized. The present study employed a high-throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response (termed a transcriptomics-based point of departure [tPOD]) in larval fathead minnows (Pimephales promelas; 5-6 days postfertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole-body expression of 1832 genes, the median tPOD for the 20 PFAS tested was 10 µM. Longer-chain carboxylic acids (12-13 C-F); an eight-C-F dialcohol, N-alkyl sulfonamide; and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations <1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole-transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sublethal effects have been reported in fish (available for 10 PFAS). Nonetheless, fathead minnow tPODs were orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes, suggesting a substantial margin of safety. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening-level potency estimates for use in ecological risk-based prioritization.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":"2455-2469"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/etc.5825","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that ecological hazards of most PFAS remain uncharacterized. The present study employed a high-throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response (termed a transcriptomics-based point of departure [tPOD]) in larval fathead minnows (Pimephales promelas; 5-6 days postfertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole-body expression of 1832 genes, the median tPOD for the 20 PFAS tested was 10 µM. Longer-chain carboxylic acids (12-13 C-F); an eight-C-F dialcohol, N-alkyl sulfonamide; and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations <1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole-transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sublethal effects have been reported in fish (available for 10 PFAS). Nonetheless, fathead minnow tPODs were orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes, suggesting a substantial margin of safety. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening-level potency estimates for use in ecological risk-based prioritization.

利用黑头鲦鱼(Pimephales promelas)幼体还原转录组测定法,推导出基于转录组学的 20 种全氟化或多氟化烷基物质的出发点。
传统的毒性测试无法跟上新化学品进入商业领域的步伐。因此,许多鱼类和野生动物可能会接触到的化学品的毒性数据非常有限或根本没有。全氟烷基和多氟烷基物质(PFAS)就是这一问题的典型代表,因为大多数 PFAS 的生态危害仍未定性。本研究采用了一种高通量检测方法,以确定 20 种具有不同性质的 PFAS 在接触 24 小时的黑头鲦鱼(Pimephales promelas;受精后 5-6 天)幼体中引起协同基因表达反应(称为基于转录组学的起始点 [tPOD])的浓度。 根据测量 1832 个基因全身表达的简化转录组方法,所测试的 20 种 PFAS 的中位 tPOD 值为 10 µM。长链羧酸(12-13 C-F)、8-C-F 二羟基、N-烷基磺酰胺和端基磺酸是最有效的全氟辛烷磺酸,在浓度为 10 µM 时可引起基因表达反应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
9.80%
发文量
265
审稿时长
3.4 months
期刊介绍: The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...] Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信