ANCUT1, a novel thermoalkaline cutinase from Aspergillus nidulans and its application on hydroxycinnamic acids lipophilization.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-06-01 Epub Date: 2024-02-28 DOI:10.1007/s10529-024-03467-2
Carolina Peña-Montes, Eva Bermúdez-García, Denise Castro-Ochoa, Fernanda Vega-Pérez, Katia Esqueda-Domínguez, José Augusto Castro-Rodríguez, Augusto González-Canto, Laura Segoviano-Reyes, Arturo Navarro-Ocaña, Amelia Farrés
{"title":"ANCUT1, a novel thermoalkaline cutinase from Aspergillus nidulans and its application on hydroxycinnamic acids lipophilization.","authors":"Carolina Peña-Montes, Eva Bermúdez-García, Denise Castro-Ochoa, Fernanda Vega-Pérez, Katia Esqueda-Domínguez, José Augusto Castro-Rodríguez, Augusto González-Canto, Laura Segoviano-Reyes, Arturo Navarro-Ocaña, Amelia Farrés","doi":"10.1007/s10529-024-03467-2","DOIUrl":null,"url":null,"abstract":"<p><p>One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively. It shows maximum activity at pH 9 and 60 °C under assayed conditions and retains more than 60% of activity after incubation for 1 h at 60 °C in a wide range of pH values (6-10) after incubations of 1 or 3 h. It has a higher activity towards medium-chain esters and can modify long-chain length hydroxylated fatty acids constituting cutin. Its substrate specificity properties allow the lipophilization of alkyl coumarates, valuable antioxidants and its thermoalkaline behavior, which competes favorably with other fungal cutinases, suggests it may be useful in many more applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03467-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively. It shows maximum activity at pH 9 and 60 °C under assayed conditions and retains more than 60% of activity after incubation for 1 h at 60 °C in a wide range of pH values (6-10) after incubations of 1 or 3 h. It has a higher activity towards medium-chain esters and can modify long-chain length hydroxylated fatty acids constituting cutin. Its substrate specificity properties allow the lipophilization of alkyl coumarates, valuable antioxidants and its thermoalkaline behavior, which competes favorably with other fungal cutinases, suggests it may be useful in many more applications.

Abstract Image

来自裸曲霉的新型热碱性角叉菜酶 ANCUT1 及其在羟基肉桂酸脂化中的应用
本文介绍了裸曲霉基因组中编码的四种角质素酶之一 ANCUT1。对培养条件进行了评估,发现这种酶只有在培养基中存在角叉菜胶时才会产生,这与之前描述的 ANCUT2 不同,ANCUT2 与 ANCUT1 有 62% 的氨基酸相同性。它们之间的区别包括 ANCUT1 是一种较小的酶,实验分子量和 pI 值分别为 22 kDa 和 6。在测定条件下,它在 pH 值为 9 和 60 °C 时显示出最大活性,在 60 °C 下孵育 1 小时后,在广泛的 pH 值范围(6-10)内孵育 1 或 3 小时后仍能保持 60% 以上的活性。它对中链酯具有较高的活性,并能修饰构成角质素的长链羟化脂肪酸。它的底物特异性使烷基香豆酸盐(一种有价值的抗氧化剂)能够亲脂化,而且它的热碱性行为与其他真菌角质酶相比具有优势,这表明它可能会有更多的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信