{"title":"A novel wide-band, small size and high gain patch antenna array for 5G mm-wave applications using adaptive neuro-fuzzy inference system","authors":"Lahcen Sellak, Samira Chabaa, Saida Ibnyaich, Lahcen Aguni, Ahmad Sarosh, Abdelouhab Zeroual, Atmane Baddou","doi":"10.1007/s10470-023-02245-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper a wide-band, small size and high gain modified patch antenna array and a single element antenna for fifth Generation (5G) millimetre-wave (mm-wave) applications have been presented. The designing of single element antenna and array antenna is based on the Adaptive Neuro-Fuzzy Inference systems (ANFIS). The ANFIS technique is used to estimate the dimensions of the single element as well as the spacing between patch antenna elements in antenna array. The single element’s operating frequency is 28 GHz, While the array antenna covers the frequency band from 23.6 to 29.2 GHz, resonating at 25 and 28 GHz. The antenna array was designed and simulated using the Rogers RT duroid 5880 Substrate, which has a dielectric constant of 2.2, a loss tangent <span>\\(\\tan ( \\delta )\\)</span> of 0.0009, and thickness of 0.508 mm. The proposed single element patch antenna has a size of 4<span>\\(\\times 4.8\\)</span> <span>\\(\\times\\)</span>0.508 <span>\\({\\text{mm}}^{3}\\)</span> with wideband range from 23 to 38.6 GHz (15.6 GHz) with a gain of 4.17 dB. Based on these properties, the single element is expanded into a six-element array with a compact size of 13.2<span>\\(\\times\\)</span>23.8<span>\\(\\times\\)</span> 0.508 <span>\\({\\text{mm}}^{3}\\)</span> in order to enhance the gain and to make the antenna radiation pattern directional. The designed antenna array has a wide-band from 23.6 to 29.2GHz (5.6 GHz) and a high gain of 11 dB, making it as strong candidate for future mm-wave applications.\n</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"118 3","pages":"603 - 618"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10470-023-02245-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02245-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper a wide-band, small size and high gain modified patch antenna array and a single element antenna for fifth Generation (5G) millimetre-wave (mm-wave) applications have been presented. The designing of single element antenna and array antenna is based on the Adaptive Neuro-Fuzzy Inference systems (ANFIS). The ANFIS technique is used to estimate the dimensions of the single element as well as the spacing between patch antenna elements in antenna array. The single element’s operating frequency is 28 GHz, While the array antenna covers the frequency band from 23.6 to 29.2 GHz, resonating at 25 and 28 GHz. The antenna array was designed and simulated using the Rogers RT duroid 5880 Substrate, which has a dielectric constant of 2.2, a loss tangent \(\tan ( \delta )\) of 0.0009, and thickness of 0.508 mm. The proposed single element patch antenna has a size of 4\(\times 4.8\)\(\times\)0.508 \({\text{mm}}^{3}\) with wideband range from 23 to 38.6 GHz (15.6 GHz) with a gain of 4.17 dB. Based on these properties, the single element is expanded into a six-element array with a compact size of 13.2\(\times\)23.8\(\times\) 0.508 \({\text{mm}}^{3}\) in order to enhance the gain and to make the antenna radiation pattern directional. The designed antenna array has a wide-band from 23.6 to 29.2GHz (5.6 GHz) and a high gain of 11 dB, making it as strong candidate for future mm-wave applications.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.