Flow Time Scheduling and Prefix Beck–Fiala

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Nikhil Bansal, Lars Rohwedder, Ola Svensson
{"title":"Flow Time Scheduling and Prefix Beck–Fiala","authors":"Nikhil Bansal, Lars Rohwedder, Ola Svensson","doi":"10.1137/22m1541010","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Ahead of Print. <br/> Abstract. We relate discrepancy theory with the classic scheduling problems of minimizing max flow time and total flow time on unrelated machines. Specifically, we give a general reduction that allows us to transfer discrepancy bounds in the prefix Beck–Fiala (bounded [math]-norm) setting to bounds on the flow time of an optimal schedule. Combining our reduction with a deep result proved by Banaszczyk via convex geometry gives guarantees of [math] and [math] for max flow time and total flow time, respectively, improving upon the previous best guarantees of [math] and [math]. Apart from the improved guarantees, the reduction motivates seemingly easy versions of prefix discrepancy questions: any constant bound on prefix Beck–Fiala where vectors have sparsity two (sparsity one being trivial) would already yield tight guarantees for both max flow time and total flow time. While known techniques solve this case when the entries take values in [math], we show that they are unlikely to transfer to the more general 2-sparse case of bounded [math]-norm.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"17 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/22m1541010","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Computing, Ahead of Print.
Abstract. We relate discrepancy theory with the classic scheduling problems of minimizing max flow time and total flow time on unrelated machines. Specifically, we give a general reduction that allows us to transfer discrepancy bounds in the prefix Beck–Fiala (bounded [math]-norm) setting to bounds on the flow time of an optimal schedule. Combining our reduction with a deep result proved by Banaszczyk via convex geometry gives guarantees of [math] and [math] for max flow time and total flow time, respectively, improving upon the previous best guarantees of [math] and [math]. Apart from the improved guarantees, the reduction motivates seemingly easy versions of prefix discrepancy questions: any constant bound on prefix Beck–Fiala where vectors have sparsity two (sparsity one being trivial) would already yield tight guarantees for both max flow time and total flow time. While known techniques solve this case when the entries take values in [math], we show that they are unlikely to transfer to the more general 2-sparse case of bounded [math]-norm.
流动时间调度和前缀贝克-菲亚拉
SIAM 计算期刊》,提前印刷。 摘要我们将差异理论与无关机器上最大流时和总流时最小化的经典调度问题联系起来。具体来说,我们给出了一个一般性的还原,使我们能够将前缀贝克-菲亚拉(有界[数学]-规范)设置中的差异约束转移到最优调度的流时约束上。将我们的还原与巴纳日克通过凸几何证明的一个深层结果相结合,可以分别得到最大流时和总流时的[math]和[math]保证,改进了之前的[math]和[math]最佳保证。除了改进的保证之外,这个还原还激发了看似简单的前缀差异问题:当向量具有稀疏性二(稀疏性一是微不足道的)时,对前缀 Beck-Fiala 的任何常量约束都会对最大流动时间和总流动时间产生严格的保证。虽然已知的技术可以解决[math]项取值时的这种情况,但我们的研究表明,这些技术不太可能应用于[math]项有界的更一般的 2 稀疏情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信