Finding Near-Optimal Portfolios With Quality-Diversity

Bruno Gašperov, Marko Đurasević, Domagoj Jakobovic
{"title":"Finding Near-Optimal Portfolios With Quality-Diversity","authors":"Bruno Gašperov, Marko Đurasević, Domagoj Jakobovic","doi":"arxiv-2402.16118","DOIUrl":null,"url":null,"abstract":"The majority of standard approaches to financial portfolio optimization (PO)\nare based on the mean-variance (MV) framework. Given a risk aversion\ncoefficient, the MV procedure yields a single portfolio that represents the\noptimal trade-off between risk and return. However, the resulting optimal\nportfolio is known to be highly sensitive to the input parameters, i.e., the\nestimates of the return covariance matrix and the mean return vector. It has\nbeen shown that a more robust and flexible alternative lies in determining the\nentire region of near-optimal portfolios. In this paper, we present a novel\napproach for finding a diverse set of such portfolios based on\nquality-diversity (QD) optimization. More specifically, we employ the\nCVT-MAP-Elites algorithm, which is scalable to high-dimensional settings with\npotentially hundreds of behavioral descriptors and/or assets. The results\nhighlight the promising features of QD as a novel tool in PO.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.16118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of standard approaches to financial portfolio optimization (PO) are based on the mean-variance (MV) framework. Given a risk aversion coefficient, the MV procedure yields a single portfolio that represents the optimal trade-off between risk and return. However, the resulting optimal portfolio is known to be highly sensitive to the input parameters, i.e., the estimates of the return covariance matrix and the mean return vector. It has been shown that a more robust and flexible alternative lies in determining the entire region of near-optimal portfolios. In this paper, we present a novel approach for finding a diverse set of such portfolios based on quality-diversity (QD) optimization. More specifically, we employ the CVT-MAP-Elites algorithm, which is scalable to high-dimensional settings with potentially hundreds of behavioral descriptors and/or assets. The results highlight the promising features of QD as a novel tool in PO.
寻找具有质量多样性的近优投资组合
金融投资组合优化(PO)的大多数标准方法都基于均值-方差(MV)框架。在给定风险厌恶系数的情况下,均值-方差程序会产生一个代表风险与收益之间最佳权衡的单一投资组合。然而,众所周知,由此得出的最优投资组合对输入参数(即收益协方差矩阵和平均收益向量的估计值)高度敏感。事实证明,更稳健、更灵活的替代方法在于确定近似最优投资组合的整个区域。在本文中,我们提出了一种基于质量多样性(QD)优化的新方法,用于寻找多样化的此类投资组合。更具体地说,我们采用了 CVT-MAP-Elites 算法,该算法可扩展至可能包含数百个行为描述符和/或资产的高维环境。研究结果凸显了 QD 作为 PO 新工具的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信