{"title":"The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces II","authors":"","doi":"10.1007/s13540-024-00255-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this work we study the Riemann-Liouville fractional integral of order <span> <span>\\(\\alpha \\in (0,1/p)\\)</span> </span> as an operator from <span> <span>\\(L^p(I;X)\\)</span> </span> into <span> <span>\\(L^{q}(I;X)\\)</span> </span>, with <span> <span>\\(1\\le q\\le p/(1-p\\alpha )\\)</span> </span>, whether <span> <span>\\(I=[t_0,t_1]\\)</span> </span> or <span> <span>\\(I=[t_0,\\infty )\\)</span> </span> and <em>X</em> is a Banach space. Our main result provides necessary and sufficient conditions to ensure the compactness of the Riemann-Liouville fractional integral from <span> <span>\\(L^p(t_0,t_1;X)\\)</span> </span> into <span> <span>\\(L^{q}(t_0,t_1;X)\\)</span> </span>, when <span> <span>\\(1\\le q< p/(1-p\\alpha )\\)</span> </span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00255-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we study the Riemann-Liouville fractional integral of order \(\alpha \in (0,1/p)\) as an operator from \(L^p(I;X)\) into \(L^{q}(I;X)\), with \(1\le q\le p/(1-p\alpha )\), whether \(I=[t_0,t_1]\) or \(I=[t_0,\infty )\) and X is a Banach space. Our main result provides necessary and sufficient conditions to ensure the compactness of the Riemann-Liouville fractional integral from \(L^p(t_0,t_1;X)\) into \(L^{q}(t_0,t_1;X)\), when \(1\le q< p/(1-p\alpha )\).
Abstract In this work we study the Riemann-Liouville fractional integral of order \(\alpha \in (0,1/p)\) as an operator from \(L^p(I;X)\) into \(L^{q}(I;X)\) , with\(1\le q\le p/(1-p\alpha )\).with (1嘞 q嘞 p/(1-p\alpha )\),无论是(I=[t_0,t_1]\)还是(I=[t_0,\infty )\),X 都是一个巴拿赫空间。我们的主要结果提供了必要条件和充分条件,以确保从 \(L^p(t_0,t_1;X)\) 到 \(L^{q}(t_0,t_1;X)\) 的黎曼-柳维尔分数积分的紧凑性。, when \(1\le q< p/(1-p\alpha )\) .