Time-resolved ARPES studies of quantum materials

IF 45.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Fabio Boschini, Marta Zonno, Andrea Damascelli
{"title":"Time-resolved ARPES studies of quantum materials","authors":"Fabio Boschini, Marta Zonno, Andrea Damascelli","doi":"10.1103/revmodphys.96.015003","DOIUrl":null,"url":null,"abstract":"Angle-resolved photoemission spectroscopy (ARPES), with its exceptional sensitivity to both the binding energy and the momentum of valence electrons in solids, provides unparalleled insight into the electronic structure of quantum materials. Over the past two decades, the advent of femtosecond lasers, which can deliver ultrashort and coherent light pulses, has ushered the ARPES technique into the time domain. Currently time-resolved ARPES (TR-ARPES) can probe ultrafast electron dynamics and the out-of-equilibrium electronic structure, providing a wealth of information that is otherwise unattainable in conventional ARPES experiments. This review begins with an introduction to the theoretical underpinnings of TR-ARPES followed by a description of recent advances in state-of-the-art ultrafast sources and optical excitation schemes. It then reviews paradigmatic phenomena investigated by TR-ARPES thus far, such as out-of-equilibrium electronic states and their spin dynamics, Floquet-Volkov states, photoinduced phase transitions, electron-phonon coupling, and surface photovoltage effects. Each section highlights TR-ARPES data from diverse classes of quantum materials, including semiconductors, charge-ordered systems, topological materials, excitonic insulators, Van der Waals materials, and unconventional superconductors. These examples demonstrate how TR-ARPES has played a critical role in unraveling the complex dynamical properties of quantum materials. The conclusion outlines possible future directions and opportunities.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":"78 1","pages":""},"PeriodicalIF":45.9000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.96.015003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Angle-resolved photoemission spectroscopy (ARPES), with its exceptional sensitivity to both the binding energy and the momentum of valence electrons in solids, provides unparalleled insight into the electronic structure of quantum materials. Over the past two decades, the advent of femtosecond lasers, which can deliver ultrashort and coherent light pulses, has ushered the ARPES technique into the time domain. Currently time-resolved ARPES (TR-ARPES) can probe ultrafast electron dynamics and the out-of-equilibrium electronic structure, providing a wealth of information that is otherwise unattainable in conventional ARPES experiments. This review begins with an introduction to the theoretical underpinnings of TR-ARPES followed by a description of recent advances in state-of-the-art ultrafast sources and optical excitation schemes. It then reviews paradigmatic phenomena investigated by TR-ARPES thus far, such as out-of-equilibrium electronic states and their spin dynamics, Floquet-Volkov states, photoinduced phase transitions, electron-phonon coupling, and surface photovoltage effects. Each section highlights TR-ARPES data from diverse classes of quantum materials, including semiconductors, charge-ordered systems, topological materials, excitonic insulators, Van der Waals materials, and unconventional superconductors. These examples demonstrate how TR-ARPES has played a critical role in unraveling the complex dynamical properties of quantum materials. The conclusion outlines possible future directions and opportunities.

Abstract Image

量子材料的时间分辨 ARPES 研究
角度分辨光发射光谱(ARPES)对固体中价电子的结合能和动量都非常敏感,因此能为量子材料的电子结构提供无与伦比的洞察力。在过去的二十年里,飞秒激光的出现将 ARPES 技术带入了时域,飞秒激光可以发出超短的相干光脉冲。目前,时间分辨 ARPES(TR-ARPES)可以探测超快电子动力学和失衡电子结构,提供传统 ARPES 实验无法获得的大量信息。本综述首先介绍了 TR-ARPES 的理论基础,然后介绍了最新超快源和光学激发方案的最新进展。然后回顾了 TR-ARPES 迄今为止研究的典型现象,如失衡电子态及其自旋动力学、Floquet-Volkov 态、光诱导相变、电子-声子耦合和表面光电压效应。每一部分都重点介绍了不同类别量子材料的 TR-ARPES 数据,包括半导体、电荷有序系统、拓扑材料、激子绝缘体、范德华材料和非常规超导体。这些例子表明,TR-ARPES 在揭示量子材料复杂的动力学特性方面发挥了关键作用。结论概述了未来可能的发展方向和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews of Modern Physics
Reviews of Modern Physics 物理-物理:综合
CiteScore
76.20
自引率
0.70%
发文量
30
期刊介绍: Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信