{"title":"Infinitesimal dilogarithm on curves over truncated polynomial rings","authors":"Sinan Ünver","doi":"10.2140/ant.2024.18.685","DOIUrl":null,"url":null,"abstract":"<p>We construct infinitesimal invariants of thickened one dimensional cycles in three dimensional space, which are the simplest cycles that are not in the Milnor range. This generalizes Park’s work on the regulators of additive cycles. The construction also allows us to prove the infinitesimal version of the strong reciprocity conjecture for thickenings of all orders. Classical analogs of our invariants are based on the dilogarithm function and our invariant could be seen as their infinitesimal version. Despite this analogy, the infinitesimal version cannot be obtained from their classical counterparts through a limiting process. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"17 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.685","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We construct infinitesimal invariants of thickened one dimensional cycles in three dimensional space, which are the simplest cycles that are not in the Milnor range. This generalizes Park’s work on the regulators of additive cycles. The construction also allows us to prove the infinitesimal version of the strong reciprocity conjecture for thickenings of all orders. Classical analogs of our invariants are based on the dilogarithm function and our invariant could be seen as their infinitesimal version. Despite this analogy, the infinitesimal version cannot be obtained from their classical counterparts through a limiting process.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.