Robustness of remediation measures against liquefaction induced manhole uplift under mainshock-aftershock sequence

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Zhiyong Zhang , Siau Chen Chian
{"title":"Robustness of remediation measures against liquefaction induced manhole uplift under mainshock-aftershock sequence","authors":"Zhiyong Zhang ,&nbsp;Siau Chen Chian","doi":"10.1016/j.sandf.2024.101439","DOIUrl":null,"url":null,"abstract":"<div><p>Earthquakes generally consist of one mainshock and subsequent aftershocks. Although effects of aftershocks following the mainshock on surface structures has been studied extensively, similar studies on underground structures are rarely reported in the literature. With the fast advances in underground space development, robustness of remediation measures against underground structures uplift induced by soil liquefaction shall be examined to ensure their functioning subject to not only the mainshock but also the subsequent aftershocks. This paper studies the uplift behaviour of a conventional manhole subjected to the mainshock-aftershock sequence. It was found that, in the ground that becomes liquefied during the mainshock, manholes become more vulnerable when faced with aftershocks. Due to this reason, some of the previously proposed remediation measures, such as increasing the manholes’ self-weight, roughening the sidewalls, were examined using centrifuge modeling in this study. It was found that such measures had little effect in the aftershocks despite their effectiveness in the precedent mainshock. In contrast, the methods that mitigates manhole uplift by enhancing the manhole’s base permeability, demonstrated better performance in the aftershock than in the mainshock, indicating its promising application potential in future mitigation design.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 2","pages":"Article 101439"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000179/pdfft?md5=c85f362a5a8d079607632180965a9798&pid=1-s2.0-S0038080624000179-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624000179","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Earthquakes generally consist of one mainshock and subsequent aftershocks. Although effects of aftershocks following the mainshock on surface structures has been studied extensively, similar studies on underground structures are rarely reported in the literature. With the fast advances in underground space development, robustness of remediation measures against underground structures uplift induced by soil liquefaction shall be examined to ensure their functioning subject to not only the mainshock but also the subsequent aftershocks. This paper studies the uplift behaviour of a conventional manhole subjected to the mainshock-aftershock sequence. It was found that, in the ground that becomes liquefied during the mainshock, manholes become more vulnerable when faced with aftershocks. Due to this reason, some of the previously proposed remediation measures, such as increasing the manholes’ self-weight, roughening the sidewalls, were examined using centrifuge modeling in this study. It was found that such measures had little effect in the aftershocks despite their effectiveness in the precedent mainshock. In contrast, the methods that mitigates manhole uplift by enhancing the manhole’s base permeability, demonstrated better performance in the aftershock than in the mainshock, indicating its promising application potential in future mitigation design.

主震--余震序列下针对液化引起的沙井翘起的补救措施的稳健性
地震一般由一次主震和随后的余震组成。尽管对主震后余震对地表结构的影响进行了广泛的研究,但文献中很少有关于地下结构的类似研究报告。随着地下空间开发的快速发展,应研究针对土壤液化引起的地下结构隆起的补救措施的稳健性,以确保这些措施不仅能在主震中发挥作用,还能在随后的余震中发挥作用。本文研究了传统沙井在主震-余震序列下的隆升行为。研究发现,在主震期间变得液化的地面上,沙井在面对余震时会变得更加脆弱。因此,本研究利用离心机模型对之前提出的一些补救措施进行了研究,如增加沙井的自重、使侧壁粗糙化等。结果发现,尽管这些措施在前一次主震中很有效,但在余震中却收效甚微。相比之下,通过增强沙井底部渗透性来减轻沙井上浮的方法在余震中的表现要好于在主震中的表现,这表明它在未来的减灾设计中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信