A Low-Noise Low-Power 0.001Hz–1kHz Neural Recording System-on-Chip With Sample-Level Duty-Cycling

Jiajia Wu;Abraham Akinin;Jonathan Somayajulu;Min S. Lee;Akshay Paul;Hongyu Lu;Yongjae Park;Seong-Jin Kim;Patrick P. Mercier;Gert Cauwenberghs
{"title":"A Low-Noise Low-Power 0.001Hz–1kHz Neural Recording System-on-Chip With Sample-Level Duty-Cycling","authors":"Jiajia Wu;Abraham Akinin;Jonathan Somayajulu;Min S. Lee;Akshay Paul;Hongyu Lu;Yongjae Park;Seong-Jin Kim;Patrick P. Mercier;Gert Cauwenberghs","doi":"10.1109/TBCAS.2024.3368068","DOIUrl":null,"url":null,"abstract":"Advances in brain-machine interfaces and wearable biomedical sensors for healthcare and human-computer interactions call for precision electrophysiology to resolve a variety of biopotential signals across the body that cover a wide range of frequencies, from the mHz-range electrogastrogram (EGG) to the kHz-range electroneurogram (ENG). Existing integrated wearable solutions for minimally invasive biopotential recordings are limited in detection range and accuracy due to trade-offs in bandwidth, noise, input impedance, and power consumption. This article presents a 16-channel wide-band ultra-low-noise neural recording system-on-chip (SoC) fabricated in 65nm CMOS for chronic use in mobile healthcare settings that spans a bandwidth of 0.001 Hz to 1 kHz through a featured sample-level duty-cycling (SLDC) mode. Each recording channel is implemented by a delta-sigma analog-to-digital converter (ADC) achieving 1.0 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\n V\n<inline-formula><tex-math>${}_{rms}$</tex-math></inline-formula>\n input-referred noise over 1Hz–1kHz bandwidth with a Noise Efficiency Factor (NEF) of 2.93 in continuous operation mode. In SLDC mode, the power supply is duty-cycled while maintaining consistently low input-referred noise levels at ultra-low frequencies (1.1\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nV\n<inline-formula><tex-math>${}_{rms}$</tex-math></inline-formula>\n over 0.001Hz–1Hz) and 435 M\n<inline-formula><tex-math>$\\Omega$</tex-math></inline-formula>\n input impedance. The functionalities of the proposed SoC are validated with two human electrophysiology applications: recording low-amplitude electroencephalogram (EEG) through electrodes fixated on the forehead to monitor brain waves, and ultra-slow-wave electrogastrogram (EGG) through electrodes fixated on the abdomen to monitor digestion.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 2","pages":"263-273"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10444781/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in brain-machine interfaces and wearable biomedical sensors for healthcare and human-computer interactions call for precision electrophysiology to resolve a variety of biopotential signals across the body that cover a wide range of frequencies, from the mHz-range electrogastrogram (EGG) to the kHz-range electroneurogram (ENG). Existing integrated wearable solutions for minimally invasive biopotential recordings are limited in detection range and accuracy due to trade-offs in bandwidth, noise, input impedance, and power consumption. This article presents a 16-channel wide-band ultra-low-noise neural recording system-on-chip (SoC) fabricated in 65nm CMOS for chronic use in mobile healthcare settings that spans a bandwidth of 0.001 Hz to 1 kHz through a featured sample-level duty-cycling (SLDC) mode. Each recording channel is implemented by a delta-sigma analog-to-digital converter (ADC) achieving 1.0 $\mu$ V ${}_{rms}$ input-referred noise over 1Hz–1kHz bandwidth with a Noise Efficiency Factor (NEF) of 2.93 in continuous operation mode. In SLDC mode, the power supply is duty-cycled while maintaining consistently low input-referred noise levels at ultra-low frequencies (1.1 $\mu$ V ${}_{rms}$ over 0.001Hz–1Hz) and 435 M $\Omega$ input impedance. The functionalities of the proposed SoC are validated with two human electrophysiology applications: recording low-amplitude electroencephalogram (EEG) through electrodes fixated on the forehead to monitor brain waves, and ultra-slow-wave electrogastrogram (EGG) through electrodes fixated on the abdomen to monitor digestion.
具有采样级占空比的低噪声低功耗 0.001Hz-1kHz 片上神经记录系统
用于医疗保健和人机交互的脑机接口和可穿戴生物医学传感器的发展,需要精确的电生理学来分辨人体的各种生物电位信号,这些信号涵盖了从 mHz 范围的胃电图(EGG)到 kHz 范围的电神经电图(ENG)等各种频率。由于在带宽、噪声、输入阻抗和功耗方面的权衡,现有的微创生物电位记录集成可穿戴解决方案在检测范围和精度方面受到限制。本文介绍了一款采用 65nm CMOS 工艺制造的 16 通道宽带超低噪声神经记录片上系统 (SoC),通过特色采样级占空比(SLDC)模式实现 0.001 Hz 至 1 kHz 的带宽,可长期用于移动医疗环境。每个记录通道由一个三角积分模数转换器 (ADC) 实现,在 1Hz 至 1kHz 带宽范围内的输入参考噪声为 1.0 μVrms,连续工作模式下的噪声效率系数 (NEF) 为 2.93。在 SLDC 模式下,电源可在超低频率(0.001Hz-1Hz 1.1 μVrms)和 435 MΩ 输入阻抗下保持稳定的低输入参考噪声水平。拟议 SoC 的功能通过两个人体电生理学应用进行了验证:通过固定在前额的电极记录低振幅脑电图 (EEG) 以监测脑电波,以及通过固定在腹部的电极记录超慢速胃电图 (EGG) 以监测消化情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信