Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning.

IF 1.3 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Maximilian Frederik Russe, Marco Reisert, Fabian Bamberg, Alexander Rau
{"title":"Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning.","authors":"Maximilian Frederik Russe, Marco Reisert, Fabian Bamberg, Alexander Rau","doi":"10.1055/a-2264-5631","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong> Large language models (LLMs) such as ChatGPT have shown significant potential in radiology. Their effectiveness often depends on prompt engineering, which optimizes the interaction with the chatbot for accurate results. Here, we highlight the critical role of prompt engineering in tailoring the LLMs' responses to specific medical tasks.</p><p><strong>Materials and methods: </strong> Using a clinical case, we elucidate different prompting strategies to adapt the LLM ChatGPT using GPT4 to new tasks without additional training of the base model. These approaches range from precision prompts to advanced in-context methods such as few-shot and zero-shot learning. Additionally, the significance of embeddings, which serve as a data representation technique, is discussed.</p><p><strong>Results: </strong> Prompt engineering substantially improved and focused the chatbot's output. Moreover, embedding of specialized knowledge allows for more transparent insight into the model's decision-making and thus enhances trust.</p><p><strong>Conclusion: </strong> Despite certain challenges, prompt engineering plays a pivotal role in harnessing the potential of LLMs for specialized tasks in the medical domain, particularly radiology. As LLMs continue to evolve, techniques like few-shot learning, zero-shot learning, and embedding-based retrieval mechanisms will become indispensable in delivering tailored outputs.</p><p><strong>Key points: </strong>  · Large language models might impact radiological practice and decision-masking.. · However, implementation and performance are dependent on the assigned task.. · Optimization of prompting strategies can substantially improve model performance.. · Strategies for prompt engineering range from precision prompts to zero-shot learning..</p><p><strong>Citation format: </strong>· Russe MF, Reisert M, Bamberg F et al. Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning . Fortschr Röntgenstr 2024; 196: 1166 - 1170.</p>","PeriodicalId":21490,"journal":{"name":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rofo-fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2264-5631","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose:  Large language models (LLMs) such as ChatGPT have shown significant potential in radiology. Their effectiveness often depends on prompt engineering, which optimizes the interaction with the chatbot for accurate results. Here, we highlight the critical role of prompt engineering in tailoring the LLMs' responses to specific medical tasks.

Materials and methods:  Using a clinical case, we elucidate different prompting strategies to adapt the LLM ChatGPT using GPT4 to new tasks without additional training of the base model. These approaches range from precision prompts to advanced in-context methods such as few-shot and zero-shot learning. Additionally, the significance of embeddings, which serve as a data representation technique, is discussed.

Results:  Prompt engineering substantially improved and focused the chatbot's output. Moreover, embedding of specialized knowledge allows for more transparent insight into the model's decision-making and thus enhances trust.

Conclusion:  Despite certain challenges, prompt engineering plays a pivotal role in harnessing the potential of LLMs for specialized tasks in the medical domain, particularly radiology. As LLMs continue to evolve, techniques like few-shot learning, zero-shot learning, and embedding-based retrieval mechanisms will become indispensable in delivering tailored outputs.

Key points:   · Large language models might impact radiological practice and decision-masking.. · However, implementation and performance are dependent on the assigned task.. · Optimization of prompting strategies can substantially improve model performance.. · Strategies for prompt engineering range from precision prompts to zero-shot learning..

Citation format: · Russe MF, Reisert M, Bamberg F et al. Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning . Fortschr Röntgenstr 2024; 196: 1166 - 1170.

通过提示工程改善 LLM 在放射学中的应用:从精确提示到零镜头学习。
目的:大型语言模型(LLM),如 ChatGPT,在放射学领域已显示出巨大潜力。它们的有效性通常取决于提示工程,即优化与聊天机器人的交互以获得准确结果。在此,我们强调了提示工程在调整 LLMs 对特定医疗任务的响应方面的关键作用:通过一个临床案例,我们阐明了不同的提示策略,以便在不对基础模型进行额外训练的情况下,让使用 GPT4 的 LLM ChatGPT 适应新任务。这些方法包括从精确提示到高级上下文方法(如少发学习和零发学习)。此外,还讨论了作为数据表示技术的嵌入的意义:结果:提示工程大大改进了聊天机器人的输出,并使其更加集中。此外,专业知识的嵌入可以更透明地洞察模型的决策,从而提高信任度:尽管存在一些挑战,但提示工程在利用 LLMs 的潜力完成医疗领域(尤其是放射学领域)的专业任务方面发挥了关键作用。随着 LLMs 的不断发展,少数几次学习、零次学习和基于嵌入的检索机制等技术将成为提供定制输出不可或缺的技术:- 大型语言模型可能会对放射学实践和决策屏蔽产生影响。- 然而,实施和性能取决于分配的任务。- 优化提示策略可大幅提高模型性能。- 提示工程的策略从精确提示到零点学习不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
5.60%
发文量
340
期刊介绍: Die RöFo veröffentlicht Originalarbeiten, Übersichtsartikel und Fallberichte aus dem Bereich der Radiologie und den weiteren bildgebenden Verfahren in der Medizin. Es dürfen nur Arbeiten eingereicht werden, die noch nicht veröffentlicht sind und die auch nicht gleichzeitig einer anderen Zeitschrift zur Veröffentlichung angeboten wurden. Alle eingereichten Beiträge unterliegen einer sorgfältigen fachlichen Begutachtung. Gegründet 1896 – nur knapp 1 Jahr nach der Entdeckung der Röntgenstrahlen durch C.W. Röntgen – blickt die RöFo auf über 100 Jahre Erfahrung als wichtigstes Publikationsmedium in der deutschsprachigen Radiologie zurück. Sie ist damit die älteste radiologische Fachzeitschrift und schafft es erfolgreich, lange Kontinuität mit dem Anspruch an wissenschaftliches Publizieren auf internationalem Niveau zu verbinden. Durch ihren zentralen Platz im Verlagsprogramm stellte die RöFo die Basis für das heute umfassende und erfolgreiche Radiologie-Medienangebot im Georg Thieme Verlag. Besonders eng verbunden ist die RöFo mit der Geschichte der Röntgengesellschaften in Deutschland und Österreich. Sie ist offizielles Organ von DRG und ÖRG und die Mitglieder der Fachgesellschaften erhalten die Zeitschrift im Rahmen ihrer Mitgliedschaft. Mit ihrem wissenschaftlichen Kernteil und dem eigenen Mitteilungsteil der Fachgesellschaften bietet die RöFo Monat für Monat ein Forum für den Austausch von Inhalten und Botschaften der radiologischen Community im deutschsprachigen Raum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信