Analysis of homemade cannabis edibles by UHPLC-HRMS after standard addition method.

IF 2.3 3区 医学 Q3 CHEMISTRY, ANALYTICAL
Pauline Thiebot, Romain Magny, Jérôme Langrand, Laurène Dufayet, Pascal Houze, Laurence Labat
{"title":"Analysis of homemade cannabis edibles by UHPLC-HRMS after standard addition method.","authors":"Pauline Thiebot, Romain Magny, Jérôme Langrand, Laurène Dufayet, Pascal Houze, Laurence Labat","doi":"10.1093/jat/bkae014","DOIUrl":null,"url":null,"abstract":"<p><p>With recent evolution of cannabis legalization around the world, cannabis edibles are booming, and determining their concentration in Δ9-tetrahydrocannabinol (Δ9-THC), the regulated psychoactive substance, remains a challenge for toxicology laboratories, which must prove whether the product has legal status or not. Cannabinoids are a large family of structurally similar and lipophilic molecules, requiring dedicated pre-analytical methods, as well as efficient chromatographic separation to differentiate cannabinoid isomers which are distinguished by their psychoactive properties and their legal status. Here, we present two independent cases of cannabis edibles, for which we performed analysis of homemade cannabis chocolate cakes and of the resins and herbs used for cooking. Quantitation was carried out with a new developed standard addition method, to avoid matrix effects and matrix-dependent calibration. Extraction by QuEChERs method, followed by targeted and non-targeted analysis by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry (UHPLC-HRMS) allowed the identification of several phytocannabinoids, mainly Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and their acid precursors Δ9-THC acid (THCA) and CBD acid (CBDA). Δ9-THC was identified in significant concentrations (mg/g) in both edibles, even though one was prepared with CBD herb. This work highlights the need to analyze cannabis edibles, as well as the resins and herbs used in their preparation if it is homemade, and it proposes a reliable analytical method for toxicology laboratories.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With recent evolution of cannabis legalization around the world, cannabis edibles are booming, and determining their concentration in Δ9-tetrahydrocannabinol (Δ9-THC), the regulated psychoactive substance, remains a challenge for toxicology laboratories, which must prove whether the product has legal status or not. Cannabinoids are a large family of structurally similar and lipophilic molecules, requiring dedicated pre-analytical methods, as well as efficient chromatographic separation to differentiate cannabinoid isomers which are distinguished by their psychoactive properties and their legal status. Here, we present two independent cases of cannabis edibles, for which we performed analysis of homemade cannabis chocolate cakes and of the resins and herbs used for cooking. Quantitation was carried out with a new developed standard addition method, to avoid matrix effects and matrix-dependent calibration. Extraction by QuEChERs method, followed by targeted and non-targeted analysis by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry (UHPLC-HRMS) allowed the identification of several phytocannabinoids, mainly Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and their acid precursors Δ9-THC acid (THCA) and CBD acid (CBDA). Δ9-THC was identified in significant concentrations (mg/g) in both edibles, even though one was prepared with CBD herb. This work highlights the need to analyze cannabis edibles, as well as the resins and herbs used in their preparation if it is homemade, and it proposes a reliable analytical method for toxicology laboratories.

在标准添加法之后,用超高压液相色谱-高分辨质谱法分析自制大麻药片。
随着近来大麻合法化在世界各地的发展,大麻食用食品蓬勃发展,而确定其受管制的精神活性物质 Δ9-四氢大麻酚 (Δ9-THC)的浓度仍然是毒理学实验室面临的一项挑战,因为实验室必须证明产品是否合法。大麻素是一大类结构相似的亲脂分子,需要专门的预分析方法和高效的色谱分离来区分大麻素异构体,这些异构体因其精神活性特性和法律地位而各不相同。在此,我们介绍两个独立的大麻食用产品案例,我们对自制的大麻巧克力蛋糕以及用于烹饪的树脂和草药进行了分析。采用新开发的标准添加法进行定量,以避免基质效应和基质依赖性校准。采用 QuEChERs 方法进行萃取,然后通过超高效液相色谱-高分辨质谱联用技术(UHPLC-HRMS)进行定向和非定向分析,从而鉴定出多种植物大麻素,主要是 Δ9-THC、CBD 及其酸性前体 THCA 和 CBDA。尽管其中一种是用 CBD 草药配制的,但在两种甜食中都鉴定出了Δ9-THC 的高浓度(毫克/克)。这项工作强调了分析大麻药片以及自制大麻药片时所用树脂和药草的必要性,并为毒理学实验室提出了一种可靠的分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
20.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation. Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信